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In this review, the physical properties of composite materials are discussed; however, 
discussion of the mechanical properties has been excluded except when necessary for the 
consideration of properties such as thermal expansion or swelling and shrinkage. One of 
the main aims in the review has been to show how the theoretical and experimental 
information that is already available may be used (a) to design and construct composite 
materials with predetermined physical properties and (b) to ensure that the physical 
properties of composite materials are properly measured and properly defined. 

1. Introduction 
The outstanding mechanical properties of fibre 
composites and especially the unique combi- 
nations of  low density with high strength and 
stiffness which can be achieved with these ma- 
terials, have led not only to extensive research on 
the mechanical properties of  composites, but also 
to a highly developed technology. In comparison, 
relatively little effort has been devoted to the 
other physical properties of composites. Properties 
such as thermal and electrical conductivity, 
thermal expansion, swelling and shrinkage are also 
important and there is not only a need to improve 
and optimize these properties but also the possi- 
bility of devising materials showing novel thermal, 
electrical, magnetic or optical behaviour~ 

The physical properties, other than mechanical, 
have been discussed in a number of  reviews [1-7]  
but most of these have been concerned primarily 
with the properties of directionally solidified 
eutectics, or with non-structural applications 
rather than basic properties. This review is con- 
cemed essentially with the relationships between 
the physical behaviour of composite materials and 
their structure. Discussion of the mechanical 
properties is excluded except where some con- 
sideration of the mechanical properties is necess- 
ary for the discussion of properties such as thermal 
expansion or swelling and shrinkage. 

�9 1976 Chapman and Hall Ltd. Printed in Great Britain. 

For the purpose of this review it will be 
assumed that a composite material is a hetero- 
geneous mixture of two or more homogeneous 
phases with at least one continuous solid phase or 
an interconnected mixture of solid phases such 
that the geometry is fixed and the material can be 
considered as a solid. The dimensions of a phase 
are assumed to be greater than about 10nm 
(100 A). On a macroscopic scale, that is on a scale 
which is large compared with the pore or particle 
diameter or with the periodicity of the structure, 
the material then behaves as a quasi-homogeneous 
solid with its own characteristic properties. The 
essential problem that has to be considered is that 
of  how the properties of the composite depend on 
the properties of the separate phases, their volume 
fractions, dimensions and geometry. To simplify 
the discussion it will usually be assumed that there 
are only two phases and that voids are absent, or if 
they should be present, as in a foamed material, 
then the voids can be regarded as one of the two 
phases. 

The selection of a suitable plan for the dis- 
cussion of the physical properties of composites 
presents some difficulties. The scheme adopted in 
this review is similar in many ways to that used by 
Albers [1] in discussing the physical properties of  
in situ composites. Two broad headings have been 
used to divide the physical properties into: 
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(1) properties determined by the properties of 
the constituent phases, their volume fractions and 
the composite geometry, and 

(2) properties depending on structural factors 
such as periodicity and particle or fibre dimen- 
sions. 

These two groups of properties are considered 
in turn. In Section 2 we examine the way in which 
the value, say A*, of a given property depends on 
the fixed values A1, A2 . . .  for the component 
phases. T h e  properties considered in Section.3 
depend primarily on structural factors such as 
periodicity, inter-fibre spacing, particle dimensions 
etc (cf. the importance of the inter-particle dis- 
tance on the mechanical properties of dispersion- 
strengthened metals). The properties considered 
include the optical, magnetic and superconducting 
properties; heat transfer under conditions where 
phase dimensions are important is also discussed. 
In Section4 we consider the special case of  
"product properties" to which attention has been 
drawn by van Suchtelen [8] and Albers [1]. The 
discussion of some special properties including 
those associated with the Hall effect and resulting 
from a combination of different properties forms 
the subject of the final section. 

The aim of this review has not been a compre- 
hensive account of  the physical properties but 
rather a discussion of representative properties 
with some indication of the ways in which 
"materials engineering" can be used to design and 
construct composite materials with predetermined 
properties using the theoretical and experimental 
information that is at present available. 

2. Properties determined by the properties 
of the constituent phases, their volume 
fractions and the composite geometry 

2.1. General considerations 
Many of the physical properties of  materials are 
described by a functional relation between a solen- 
oidal vector and an irrotational vector: for 
example, for a linear isotropic material we have 
the relations 

O = eE (1) 

where D is the electric induction, e the dielectric 
constant and E the electric field and 

B = . I -I  ( 2 )  

where B is the magnetic induction, # the magnetic 
permeability and H the magnetizing force. 
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The coefficient of thermal conductivity is 
defined by Fourier's law which for an isotropic 
medium may be written in the form 

J = - - )k  grad T (3) 

where X, the thermal conguctivity, is the pro- 
portionality constant between the heat flux 
vector J and the temperature gradient. Other 
transport coefficients are defined in a similar 
way as proportionality constants between fluxes 
and gradients. Examples are the electrical conduc- 
tivity (Ohm's law) and diffusion coefficients 
(Fick's law). 

With a composite material, the relations derived 
for all these properties will be formally identical 
and the expressions obtained for the dielectic 
constant, for example, will be equally applicable 
to the thermal conductivity or magnetic 
permeability. 

In this section, we therefore first consider the 
dielectric constant of a composite and then the 
mathematically related properties such as the 
electrical and thermal conductivities. Next we 
consider the thermal expansion together with the 
swelling and shrinkage behaviour. Properties as- 
sociated with time-dependent vector fields, in 
particular dielectric loss, fall outside the scope of 
this review. 

To simplify the discussion, it will be assumed 
that the composite consists of two phases only, 
although in some cases general relationships for a 
property of an N-phase composite may have been 
derived. It is also assumed that both phases are iso- 
tropic. We have to remember, however, that even 
if the phases are isotropic in a particular property, 
the composite m a y  be anisotropic in structure so 
that, with the composite, the property may be 
different in different directions. 

It is assumed that the composite is statistically 
homogeneous, i.e. if we take small elements of the 
material then these will all have the same physical 
properties as the whole sample provided that the 
elements are large enough compared with the 
periodicity or dimensions of the phase regions to 
ensure that they are representative. Within an 
element, however, the geometry may be regular or 
i~regular~ isotropic or anisotropic. We may, for 
example, have a random dispersion of spherical 
particles in a continuous matrix, a regular array of 
aligned filaments, continuous laminae, or a com- 
pletely irregular geometry with continuous or 
discontinuous phase regions (Fig. 1). 
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the phase geometry is available, still closer bounds 
can be set on the possible value o f  e*. The same is 
true of  other properties.  For  a few special geo- 
metries exact solutions can be obtained.  Approxi-  

mate solutions have also been obtained for two- 

phase composites with various geometries but  
these are, in general, only applicable when the 

volume fraction of  one of  the components  is low. 
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Figure 1 Composite geometries: (a) random dispersion of 
spheres in a continuous matrix, (b) regular array of 
aligned filaments, (c) continuous laminae, (d) irregular 
geometry. 

The physical behaviour of  a composite can be 
predicted with an exacti tude which depends on 
the precision with which the phase geometry can 
be specified. In a fundamental ly important  paper 
[9],  Brown showed that  the dielectric constant  o f  
a composite must depend not  only on the 
dielectric constants of  the two phases and their 
volume fractions but  also on the composite geo- 
metry.  At tempts  to derive exact theoretical ex- 

pressions o f  general applicabili ty for the dielectric 
constants of  mixtures of  unknown phase geometry 
are futile. 

The dielectric constant e* of  a mixture of  two 
phases must, however, lie between certain limits 
whatever the geometry,  and i f  some knowledge o f  

2.2. Dielectric constants 
The earlier theoretical work on the dielectric be- 

haviour of  heterogeneous systems has been de- 
scribed in some detail in the critical review by 
Van Beck [10].  The following summary includes 
some of  the more impor tant  relationships derived 
in this earlier work together with results obtained 
in more recent theoretical investigations. The di- 
electric constant o f  the composite is represented 
by  e*, the upper  and lower bounds by e~+) and 

@),  and the volume fractions of  the two phases by 
V1 and V2. We first consider the effective dielec- 
tric constants of  isotropic composites and then, in 
view of  their technological importance for other 
properties,  the relations for the dielectric con- 
stants of  fibre composites.  

2.2 .  1. I s o t r o p i c  c o m p o s i t e s  

Exact relations are available for very dilute disper- 
sions o f  particles in a continuous matrix.  Some of  
the more important  expressions for the dielectric 
constants o f  suspensions containing a small volume 
fraction (V1) o f  randomly oriented particles 
(dielectric constant  e l )  in a continuous matrix 
(dielectric constant  e2) are included in Table I. 
Equation 4 is the Rayleigh mixture formula which 
was first derived for a cubical array o f  spheres. I f  

VI (el  --e2 )/(2e2 + e l  ) ~ 1 it may be writ ten in the 

TABLE I Formulae for the dielectric constants of isotropic two-phase composites containing randomly orientated 
particles in a continuous matrix 

System Dilute suspension References SCS approximation References 
e m  = e 2 e m = e *  

Spheres 2e~ + e I + 2V l(e~ --e~) 
e * = e :  2e~ +e 1 - -VI (  % --e2) (4)[11] 

3 V 1 e 2 (e 1 - -  e : )  3 V 1 e * ( q  - -  e 2 ) 
e * = %  + (5) [10] e * = e  2 + (9) [13] 

2e2 + e  I 2e* +e l  

Discs or V~ (e 1 -- e 2)(e 2 + 2e~ ) V~ (e 1 -- e 2 )(e* + 2el ) 
lamellae e* = % + 3e~ (6) [12] e* = % + 3el (10) [12] 

Rods, needles e* Vt (el -- e2 )(5e2 + el ) . V 1 (e~ -- e~ )(5e* + e 1 ) 
orfibres =e~ + 3(e~ +e2) (7)[101 e = e 2 +  3(e*+e~) (11) [10,14] 
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simpler form given by Equation 5. This relation, 
together with Equations 6 and 7 for dilute suspen- 
sions of discs and rods, may be obtained from the 
general expression derived by Polder and Van 
Santen [15] for the dielectric constant of a dilute 
suspension of ellipsoids with a random distribution 
of orientations 

e* -~- e 2 -I- VI (e l  - 6 2 )  2 
3 abe 

em 

[e= + a i ( e ,  - e=)]  

(8) 

where em is the effective mean value of the dielec- 
tric constant of the medium around each particle 
and the Ai are the depolarizing factors along the 
ellipsoid axes a, b and c. Values for depolarizing 
factors have been tabulated by Stoner [16] ; for 
spheres the depolarizing factors are A i = �89 

For very dilute suspensions, em is equal to e2 
the dielectric constant of the matrix. At higher 
concentrations, the disturbing effects of neigh- 
bouring particles on the field have to be con- 
sidered. One way of doing this is to use the self- 
consistent scheme (SCS) in which it is assumed 
that each particle is surrounded by the composite 
material with a dielectric constant e* rather than 
by matrix with a dielectric constant e2. Setting em 
equal to e* in Equation 8 then leads to Equations 
9, 10 and 11 in Table I. Equation 9 which was 
derived by B6ttcher [13] can be shown to be sym- 
metrical in V1 and V2 (= 1 -- V1) and it can be 
argued that it is an appropriate approximation for 
a conglomerate of particles of two different ma- 
terials. 

The assumption that each particle is surrounded 
by a continuum with a dielectric constant e* is, 
however, clearly an over-simplification. A more 
satisfactory assumption with a concentrated sus- 
pension of spherical particles might be to suppose 
that each particle (radius a) is surrounded by a 
shell of matrix (outer radius b) and that this, in 
turn, is surrounded by composite material. The 
extension of the SCS approach in this way has 
been discussed by Hashin [17] in a critical assess- 
ment of the SCS approximation. A special 
situation arises when 

a 3 V1 
- ( 1 2 )  

b a 112 

since it is then possible to construct a system in 
which the space within the material is completely 
filled by spheres of varying diameter each sur- 
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rounded by its own shell of matrix with a 
thickness appropriate to the volume fraction. With 
this structural geometry which Hashin terms the 
composite spheres assemblage, the dielectric con- 
stant of the composite is given exact ly  by 

Wl 
e* = e 2 -[- [1/(el - e 2 ) ]  + (V2/3e2)" 

(13) 

For the corresponding case in which material 2 
is the particulate phase and material 1 is the 
matrix, the dielectric constant of the composite is 
given by 

r -- C1 + 
[1/@2 - - e l ) ]  + ( V l / 3 6 1 )  " 

(14) 

It may be noted that Equations 13 and 14 are 
mathematically equivalent to the corresponding 
Rayleigh mixture formulae given by Equation 4. 

Although real composite materials may have a 
structure approximating to the composite sphere 

assemblage, there will be uncertainty about the 
degree of approximation involved in using 
Equations 13 or 14, The same is true of the SCS 
approximations and the other approximate re- 
lations which have been derived for the dielectric 
constants of isotropic composites. 

Rigorous upper and lower bounds can, how- 
ever, be set on the value for the dielectric constant 
of a composite material and the use of these 
bounds may clearly be preferable to the use of 
uncertain approximations. The earliest bounds for 
the dielectric constant of a two-phase isotropic 
composite were those obtained by Wiener [18] 
and given by Equations 15 and 16 in Table II. 
These bounds have also been obtained by Brown 
using two minimization theories of classical 
electrostatics [19] and, since the expressions are 
identical with those for the longitudinal and trans- 
verse dielectric constants of a composite with 
alternating laminae, they are also the best possible 
bounds in the absence of any information on the 
geometry or degree of isotropy. The form of these 
bounds for ea/e2 =0.1 and 0.01 is shown in 
Fig. 2. 

Closer bounds for the effective dielectric con- 
stant of an isotropic composite were derived by 
Hashin and Shtrikman [20] using variational prin- 
ciples and are given by Equations 17 and 18 in 



TABLE I I Bounds foi the dielectric constants ofisotropie 
two-phase composites 

Wiener [18] 
el§ ) = qV~ + % V  2 (15) 

1 
e~_) = (I,, /ex ) + (V21%) (16) 

Hashin and Shtrikman [20] 

* V1 (17) 
~(+) = ~ + [1/(~1 - ~ 0 1  + ( G / 3 q )  

G (18) 
e~_) = e, + [1 / (% --  e, )]  +(V, 13e~) 

where e 2 > e 1 

Beran [ 22 ] 

~) = 

e~_) = 

where 

I = - -  

j - 

I 'O ~ (.--J-=O'l 

I\'R- "' 
o.8 -iX NN,, 

',\ \ N ' ,  
, .  o . , - ' ,  \ \ \ ' - ,  .., 

0 ' 4  ~?, x 

o.2 I- 

! ! I ] I 
0 0 ':) 0 " 4  0 ' 8  0 ' 8  I ' 0  

V I 

I 'Ol~ ~ 
iX , c, =o.o, 

[<e)-- <(e')2> ] (19) 0"8  I ~ \ x  Cz 
3<e> + (9(e>=/((e')2))lJ s 

[<l) (4/9(e)Z)(e'/e}2 j] -1 (20) E-z2 0"6LtL X N x , , x  

O13<~>=)<(J)= I~> + i \ ~  ",,o ) 
0.4 \ 

2 ." - :  - #  - 8 1 r r [5 {e(O)e(r)e(s)~\risi x x ' x x  
f6~=<,,= jvsJvr~ ~ ~drd$ , "i?) (3X, (a \ " , ,  0 . 2 \ \  \ \ , ,  

1 fVsL(62<e'(r)e'(s)/e(O))~risi . .  ( i ~ ' . ~  
161r~<e)2 - -  l ~ aras 8r a 6s a / r s 

0 0 ' 2  0 . 4  0"6 0"8  
V I e(x) = 

e'(x) = 
(e) = 

dielectric constant at point x 
e(x) --(e} 
ensemble average of e (x) (assumed to 
be equal to the spatial average) 
ensemble average of the product of e' 
at some co-ordinate origin within the 
composite, e at a position r from the 
origin and e' at position s. 
sets of three orthogonal space vectors 
with a common origin. 
volumes of infinite spheres in vector 
spaces denoted by subscripts. 

(d(O)e'(r)e'(s)> = 

F~ S = 

rr ,  Fs = 

Table II. The Hashin and Shtrikman bounds 
always lie within the Wiener bounds and, since 
they correspond exactly with Equations 13 and 14 
for the two composite sphere assemblages, they 
are the best possible bounds for the dielectric con- 
stant of  an isotropic two-phase material if  no 
structural information apart from the volume frac- 
tions is available. If  the values o f  el and e2 do not 
differ greatly the bounds are close together, but  
when the ratio o f  e2 to el is high the bounds 
become widely separated as shown in Fig. 2 in 
which the Hashin and Shtrikman bounds are corn- 

"O 

Figure 2 Dielectric constant of composite materials 
(e 1/% = 0.1 and %/% = 0.01). (1) Wiener bounds 
(equations 15 and 16), (2) Hashin and Shtfikman bounds 
for arbitrary geometry (Equations 17 and 18), (3) 
B6ttcher SCS approximation for spheres in a continuous 
matrix (Equation 9). 

pared with the Wiener bounds and the SCS 
approximation given by Equation 9 for a suspen- 
sion o f  spherical particles. The dielectric constants 
o f  all isotropic composites containing dispersed 
spheres in a continuous matrix should, of  course, 
fall within the Hashin and Shtrikman bounds and 
if the values o f  el and e2 do not differ greatly 
these bounds can show good agreement with 
experimental results. A good example is shown in 
Fig. 3 in which the Hashin and Shtrikman bounds 
are compared with Reynolds'  experimental results 
[10,21]  for a suspension of  glass spheres in 
carbon tetrachloride. 

If  some information on the structural geometry 
is available, then closer bounds may be set of  the 
value o f  the dielectric constant for an isotropic 
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Figure 3 Dielectric constant of composite materials: 
Hashin and Shtrikman bounds and experimental results 
for glass spheres in carbon tetrachloride [ 10, 21 ]. 

composite. To do this, statistical information is 
needed in addition to a knowledge of the volume 
fraction. Mathematically, this information can be 
introduced through n-point correlation functions 
which are related to the probability that n points 
thrown at random into the composite will all be in 
the same phase. Following the earlier work by 
Brown [9], Beran [22] obtained bounds for the 
dielectric constant using a variational principle 
which included the three-point correlation func- 
tion. These bounds are given by Equations 19 and 
20 in Table II. The application of statistical 
continuum theories of  this kind to the prediction 
of the properties of  heterogeneous materials has 
recently been examined by Corson [23-26] .  For 
the experimental determination of a correlation 
function, the associated probability functions have 
to be measured. The technique developed by 
Corson involved preparing sections of the material, 
taking random photomicrographs, superimposing 
a matrix of points on each of the photomicro- 
graphs as a sampling grid, and then noting in which 
phase each point fell. From the experimental 
observations, the two- and three-point probability 
functions can be obtained and these can then be 
used to form the two- and three-point correlation 
functions. (The procedure used by Corson for 
deriving these correlation functions is complex and 
the original papers should be consulted for 
details.) Using the correlation functions, Corson 
evaluated the Beran bounds and then compared 
these with experimental data obtained with porous 
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sandstone and firebrick (Fig. 8). The Beran bounds 
showed a significant improvement over the Hashin 
and Shtrikman bounds but the comparison with 
experimental results cannot be considered rigorous 
since it was assumed that the pl~ase geometries of 
the porous sandstone and firebrick were similar to 
that of the iron-lead composites used in the 
experimental measurement of the spatial corre- 
lation functions. 

As we have seen, the derivation of the Beran 
bounds presents serious problems. Miller [27], 
however, showed that for a broad class of isotropic 
two-phase composites which he termed cell ma- 
terials, the problem could be circumvented. For 
these materials, he deduced that the functions of 
the three-point correlation function which ap- 
peared in the bounds for e* were simply a number 
for each material with a value between 1 and �89 
with the number having a simple geometric signifi- 
cance (e.g. ~ for a spherical cell). Miller obtained 
bounds for two types of material-symmetrical 
and asymmetrical cell materials. 

In the symmetrical cell materials the space 
within the composite is subdivided by closed sur- 
faces into closed regions or cells so that the 
following requirements are met: 

(1) the space is completely filled by cells; 
(2) the cells are distributed in such a way that 

the material is statistically homogeneous and 
isotropic; 

(3) the dielectric constant e of a particular cell 
is statistically independent of the dielectric con- 
stant in any other cell; 

(4) the conditional probabilities of n points 
being and m points not being in the same cell of  a 
particular material, given that one point is in a cell 
of  that material, are the same for each material. 

Miller gives three examples of  symmetrical cell 
materials. The first example is the Poisson cell ma- 
terial in which the space within the composite is 
divided into convex polyhedron-shaped cells. In 
the second example, the cells no longer have plane 
or convex sides but are star-shaped instead. The 
third example is a composite built up of spheres 
with diameters varying in such a way that the 
space within the composite is completely filled. 

With the asymmetrical cell materials the geo- 
metry of the cells of the two materials is dissimi- 
lar. In this case, the space within the composite is 
subdivided so that the following requirements are 
fulfilled: 

(1) the space is completely fdled by cells; 



TABLE IlI  Miller's bounds for the dielectric constants ofisotropic two-phase cell materials [27] 

~4)(1 -- 4))(a -- 1) 2 ] 
e~§ = e 2 1 + 0(c~ -- 1) -- 1 + (c~ -- 1){4) + 3[(1 --4))2G~ --4)2G~ ] } (21) 

}4)(1 -- 4))(a -- 1) 2 ] - '  
e~_) = % [~ - -  4)(~ - -  I ) ]  - -  1 + a + 3 (~  - -  I ) [ ~  ~ G2 - -  (1 - -  4))2 G I  ]J (22 )  

where 4) -- V I , 1 - ( ~  = V2, cz = e l /% and G I and G 2 are shape factors for  the two  materials (~ for  spheres, 31-- for  discs, 
and 6 a- for needles). 
For asymmetrical cell materials Gx r G 2 
For symmetrical cell materials G~ = G 2 = G 

(2) the cells are distributed in such a way that  
the material is statistically homogeneous and 
isotropic; 

(3) the dielectric constant e of  a particular cell 
is statistically independent of  the dielectric con- 
stant in any other cell. 

An example of  an asymmetrical cell material is 
a composite formed from spheres and cubes of  
varying size. It is assumed that the space within 
the material can be completely filled without any 
preference as to whether a cube or sphere is in- 
serted in any given location. 

For these two-phase cell materials, Miller ob- 
tained the bounds given by Equations 21 and 22 in 
Table III.  The shape factors G1 and G2 are simple 
numbers each lying between ~ and �89 and charac- 
teristic o f  the cell geometries of  the two materials. 
If  G1 is equal to G2 then these equations represent 
the bounds for the symmetrical cell materials. The 
bounds shown in Table III  have also been derived 
by McCoy [28].  

The extreme upper bound is given by Equation 
21 with G1 = �89  and G2 = ~ ;  the extreme lower 
bound by Equation 22 with G 1 = ~ and G2 = �89 
For all possible values o f  a,  r G1 and G2, these 
bounds for the asymmetrical cell materials fall 
inside the Hashin and Shtrikman bounds. This is, 
at first sight, unexpected since the Hashin and 
Shtrikman bounds actually correspond to the 
relations f o r  a real physical geometry (the com- 
posite spheres assemblage discussed above). This 
particular geometry cannot, however, be rep- 
resented by  the asymmetrical cell model. 

When r approaches zero or unity, and a also 
approaches unity, the bounds for the symmetrical 
cell material (Ga = G2 = G) converge and become 
coincident with the exact solution for the dielec- 
tric constant of  a suspension containing particles 
of  a corresponding shape at very low concen- 
tration. The appropriate values for G which should 
be used in these bounding equations can, there- 

fore, be found by letting r approach zero or unity 
and a approach unity and then setting the solution 
equal to the small concentration solution to solve 
for G. I f  an exact small concentration solution is 
not available (e.g. with particles of  irregular shape) 
a G value may be obtained from experimental 
measurements on a suspension at low concen- 
trations. 

�9 This cell model would seem to be intrinsically 
suitable for the representation of  the behaviour of  
materials with a cell-like structure such as eutectic 
alloys or sintered materials. The appropriate G 
values will then be determined by the geometries 
of  the component  cells. The Miller bounds can 
also, as described below, be applied to systems in 
which particles are dispersed in a continuous 
matrix, i.e. suspensions. With, for example, a sus- 
pension of  spheres, the space between the spheres 
which is f'filed with matrix material is assumed to 
be made up of  cells of  all shapes and sizes so that 
the fundamental requirements of  the asymmetrical 
cell model are satisfied. The bounds are then ob- 
tained by the following method.  At low concen- 
trations of  material 1, i.e. when q~ is small, the 
bounds given by Equations 21 and 22 can be 
written in the form 

q e  

e(:O - 1 + r  ~1- -  
62 t 

and 

3[l + ])a,] 

(23) 

1) 
- 1 + r  

e 2 ot 

I - I  3 [ l + c z - - 3 ( a - - 1 ) G 1 ]  " ( 2 4 )  

I f  e~+) is set equal to e(*), a quadratic 
equation in G 1 is obtained with the roots G1 = 
�89 and G1 = ~. I f  G 1 is set equal to ~ then 

E q u a t i o n s  23 and 24 become equivalent to 
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Equation 5, the solution for a dilute suspension of 
spheres, so that Miller concludes that Ga = ~ has 
the geometrical significance of a sphere. 

The bounds for a suspension of spheres when 
the spheres have the higher dielectric constant, are 
then obtained from Equations 21 and 22 by 
setting Gx =~  and G2 equal to a value in the 
range ~ to ] which gives the highest upper and the 
lowest lower bound. If the spheres have the lower 
dielectric constant then G2 is set equal to ~. The 
Miller bounds for the dielectric constant of a 
suspension of spheres in a continuous matrix 
(el/e2 = 10) are shown in Fig. 4 together with the 
corresponding Hashin and Shtrikman bounds and 
the Rayleigh mixture formula. 

For a suspension of randomly oriented discs, 
we can set G1 in Equations 23 and 24 equal to �89 
and then these equations become equivalent to 
Equation 6 so that G1 = �89 has the geometrical 
significance of a disc. The bounds are then ob- 
tained from Equations 21 and 22 by setting G1 = 
�89 and G2 to a value in the range -~ to ~ which gives 
the highest upper and the lowest lower bound. 

Similarly, closer bounds on the dielectric 
constant of a composite containing randomly 
oriented needles can be set when the geometry 

I 0 ' 0  

'~ Z (...._* 6.0 - 

4 " 0 -  

2-0 ~ ~ -  (g )  

I I I I 
0 0 "2  0 " 4  0 ' 6  0 " 8  I ' 0  

V I 

Figure 4 Equations for the dielectric constant of  a 
suspension of spheres in a continuous matrix 
(%/% = 10). (1) B/~ttcher's SCS approximation 
(Equation 9). (2) Upper and lower bounds for Miller 
asymmetric cell model (Equations 21 and 22). (3) Upper 
Hashin and Shtrikman bound (Equation 17); composite 
spheres assemblage with spheres of material 2 in material 
1 (Equation 14). (4) Lower Hashin and Shtrikman bound 
(Equation 18); composite spheres assemblage with 
spheres of material 1 in material 2 (Equation 13); 
Rayleigh mixture formula (Equation 4). (5) Rayleigh 
mixture formula for very dilute solutions (Equation 5). 
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meets the requirements of Miller's asymmetrical 
cell model. A G value of ~ is obtained for 
needles [27] by solving Equations 23, 24 and 7 
for small perturbations (i.e. a approaches unity). 

The bounds for particle suspensions obtained 
using Miller's model are substantially closer than 
the Hashin and Shtrikman bounds for volume frac- 
tions up to about 0.6. In practice, however, there 
may be some doubt as to when a system can be 
represented by the asymmetrical cell model. The 
composite spheres assemblage in particular cannot 
be represented in this way since the dielectric 
constants for systems of this type lie outside the 
Miller bounds. 

2.2.2. Aligned rods, needles, or fibres 
I f  the rods or f ibres are o f  un i f o rm  cross-section 

and aligned in one direction then the dielectric 
constant of the composite in the axial direction 
(e~) is given by 

e.~ = Vie1 q- I72e2. (2s) 

This result is independent of the transverse 
geometry. 

For a dilute suspension of fibres with a circular 
cross-section, the transverse dielectric constant is 
given by Rayleigh's formula for cylinders [10, 11] 

e ~  - -  e 2 e 1 - -  e2  
- V 1 -  ( 2 6 )  

e§ + e= el + e2 

Using a self consistent scheme in which g--  e*, 
Davies [14] obtained the expression 

2 7 ,  e§ - e=) 
e} = e2 + (27) 

e~ + e l  

which corresponds with that given by Peterson and 
Hermans [29] for aligned cylinders perpendicular 
to the field. Numerical solutions have alSO been 
given by Springer and Tsai [30]. 

For a composite cylinder assemblage similar to 
the composite sphere assemblage described above, 
Hashin [5] showed that 

V1 

e,~ = e2 + [1/(el --e2)l  +(V=/2e2)" (28) 

This relationship is mathematically identical to 
Equation 26. 

Hashin also showed that the bounds for the 
transverse dielectric constant of a transversely 



isotropic fibre reinforced material were given by 

V1 
CT(+) = e 2 + 

[1/(el - -  e2)] + (V2/2e2)' 

and (29) 
V2 

eT(_ ) = 61 -l- 
[1/(e2 - e l ) ]  + ( V l / 2 e l )  " 

(3o) 

Since Equation 29 is identical to Equation 28 
and Equation 30 with the result for a composite 
cylinder assemblage in which material 2 is the fibre 
and material 1 the matrix, it follows that 
Equations 29 and 30 are the best possible bounds 
for the transverse dielectric constant of a trans- 
versely isotropic fibre composite if the only infor- 
mation available is the volume fractions and the 
dielectric constants of the two phases. 

When additional geometrical information is 
available, closer bounds can be set on the trans- 
verse dielectric constant. Thus, using a composite 
cylinder model similar to that used by Hashin and 
Rosen [31] for mechanical properties, Donea 
[32] derived bounds for the transverse thermal 
conductivity of a composite containing aligned 
fibres of identical circular cross-section arranged 
in a square or hexagonal array. 

Bounds for the transverse dielectric constant 
of an aligned fibre composite with additional 
information on the fibre geometry have also been 
obtained by Beran and Silnutzer [33] using a 
method of analysis closely similar to that followed 
by Beran and Miller [22, 27] in deriving bounds 
for the isotropic three-dimensional composite. It 
was, in fact, only necessary to rewrite all the 
previous results using two rather than three dimen- 
sions. This then gave the following equations for 
the upper and lower bounds 

e~'+) _ 1 [1 
(ele2)l/2 al/2 L + g l ( a -  1 ) -  

1 Vl  V2 (o( - -  1) 2 ] 

1 + (~ - 1) (V 1 -}- 2V~ G l - -  2V] G2)J ' 

and (31) 

( e l e 2 ) . 2  v l  + v 2 ~ -  

(c~- 1)(I/:]G2 - V~Cl) + (a /2)+(1  -- a/2)Vl 

(32) 

where, as before, a = el/e2 > 1. G 1 and G2 are 
two numbers lying within the range �88 to �89 which 
characterize the fibre and matrix geometries. A G 
value of �88 corresponds to a circular shape and G = 
I to the shape of parallel lamellae (two- 
dimensional needles). These bounds always lie 
between the Hashin bounds. Beran and Silnutzer 
consider the fibre geometry to be of first import- 
ance since at low concentrations the term V~2G1 
will be much larger than V] G2. 

For circular fibres, the bounds are quite close 
up to volume fractions of  about 0.2 when ot = 10 
and up to about 0.1 when a = 100. In both cases 
the bounds are close to the Hashin lower bound. 
When the volume fractions are of the order of 
0.50, however, the bounds diverge considerably. 
Beran and Silnutzer concluded that the packing 
geometry is extremely important and that 
changing the positioning of the fibres would have a 
significant effect on the value of e~.. 

This analysis has been taken a stage further by 
Elsayed and McCoy [34] who have derived 
bounds which incorporate additional geometrical 
information in the form of further shape factors 
and two packing parameters. 

2.2.3. Fibres random/y oriented in a plane 
For fibres randomly oriented in a plane, Davies 
[14] obtained the SCS-type relations 

2V1 ez(el - e2) 
e z = C 2 + 

ez +el 

ex ~ ey = e 2 +-  
2(e l  + e l )  

(34) 

2.2.4. Conducting inclusions 
For a composite system containing dispersed con- 
ducting particles el is very much greater than e2 
and approximate equations for the dielectric con- 
stant can then be derived for el + oo. For example, 
for spherical particles, when el >> e2 and g =  e2 
we have the relation 

e* = e2(1 + 3 V , )  (35) 

instead of Equation 5. For insulators (e.g. air 
cavities) in a matrix with a high dielectric constant 
el < e2 and for spherical inclusions we then have, 

e* = e2(1 3 Vt). (36) 

The derivation of these and similar relations has 
been discussed by van Beek [10]. 

2 1 1 3  

(33) 

V l ( e  I - - 6 2 )  (131 -1- 3f ix)  



2.3. Electrical conductivity 
All the expressions given in the previous section 
are also valid for the electrical conductance of a 
two-phase composite. It is only necessary to 
replace e l ,  e2, e*, e(+), e(_) etc by the conduc- 
tances O'1~ g2~ 19"* * , o(§ e~_) etc. Many of the 
expressions derived specifically for the resistance 
or conductance of a composite are indeed math- 
ematically identical with corresponding ex- 
pressions for the dielectric constant. For example, 
Maxwell's equation [35] for the specific resistance 
of a dilute suspension of spheres is 

201 +P2 + VI(Pl --P2)  
P* = 2pl + P 2 - - 2 V l ( p l " P 2 )  p2.  (37) 

When the specific resistances are replaced by 
the corresponding conductances, this becomes 
mathematically identical with the Rayleigh 
mixture formula for dielectrics (Equation4). 
Similarly, the expression for the electrical conduc- 
tivity of a two-phase composite derived by 
Landauer [36] using a self-consistent scheme 
approximation, 

O 1 - -  G *  0" 2 -- O* 
V 1 - -  + V 2 - -  - 0 (38) 

oi + 20* a2 + 20* 

corresponds with Equation 9 derived by B6ttcher 
for the dielectric system. 

In applying the expressions given in Section 2.2 
to experimental results, it must however be 
remembered that they involve the implicit assump- 
tion that interface effects such as space charge 
polarization are absent, i.e. it is necessary to 
assume that the potentials on opposite sides of the 
interface but infinitely near to each other are 
equal and that the current through any element of 
the surface is the same when measured in either 
medium [35]. With two solid phases, deviations 
from the theory may be expected if voids are 
present, but voids in a single solid phase can be 
regarded as a separate non-conducting phase. 

Landauer examined the application of Equation 
38 to experimental data on the electrical resistance 
of binary metallic mixtures. In seven cases 
(Bi-Bi2Pb, Bi-Sn, Cd-Pb,  Cu-Fe,  Cu2Sb-Sb, 
Mg2Pb-Pb, Pb-Sb)  where agreement with a mix- 
ture theory might be expected, five gave good 
agreement. A comparison of the experimental 
values for the Cu2Sb-Sb system and the 
theoretical curve is shown in Fig. 5. With the 
Mg2Pb-Pb system, however, the results failed to 
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Figure 5 Comparison of experimental values for the 
resistivity of the Cu 2Sb-Sb system [167] with 
theoretical curve obtained from Equation 38 (after 
Landauer [361 ). 
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Figure 6 Comparison of experimental values for 
conductivity of the Mg=Pb-Pb system [168] with 
theory. (1) Equation 17. (2) Equation 18. (3) Equation 
38. (After Hashin [5] ). 

fit the theory. The experimental values in this case 
do, however, fall inside the Hashin and Shtrikman 
bounds which, in this case, are not too far apart 
(Fig. 6). 

In the extreme case of composites containing 
conducting particles in an insulating matrix, the 
dominant factor determining the conductivity at 
the higher particle volume fractions would appear 
to be the formation of infinite chains of particles 
in contact with one another [37-40] .  At the 
lower volume fractions these chains are unlikely to 
be formed and the conductivity of the composite 
does not differ greatly from that of the matrix. 
The relationships between the number of particle 
contacts and the degree of continuity have been 
discussed by Gurland [41 ]. 

2.4. Thermal conductivity 
As we have noted earlier, the relations given for 
the dielectric constant in Section 2.2 will also 
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apply to steady-state heat conduction and can be 
used to derive the effective thermal conductivities 
of two-phase composite materials. Many of the 
relations given in Section 2.2 have indeed been 
rederived or reapplied in the analysis of thermal 
conduction. The formula given by Brailsford and 
Major [42] 

/1-Xa/X2t] 
1 + Va ~,~ T ~ ] ]  (39) 

for the thermal conductivity of a two-phase 
aggregate in which particles of phase 1 (thermal 
conductivity Xl and volume fraction Va) are 
surrounded by a continuous phase 2 (thermal 
conductivity X2) corresponds to Equation 4 for 
the dielectric constant and to Equation 37 for the 
specific resistance. These equations should how- 
ever only be applicable to dilute suspensions. For 
systems in which no special circumstances lead to 
the spatial continuity of either phase and each 
phase can be treated equivalently, Brailsford and 
Major [42] suggested the possible application of 
an SCS type equation corresponding to Equation 
38 derived by Landauer for the electrical conduc- 
tivity. A large number of empirical or semi- 
empirical expressions for the thermal conductivity 
of heterogeneous systems have also been 
examined. As with the dielectric constant it will, 
however, only be possible to obtain a satisfactory 
description of the thermal conductivity behaviour 
by taking the geometry of the composite into 
consideration and making proper use of the geo- 
metrical information that is available. 

Problems of heat transfer are of considerable 
technological importance in situations where heat 
transfer has to be encouraged, as in heat ex- 
changers, or reduced by the use of insulation. Most 
insulating materials are, indeed, essentially mix- 
tures of a solid material and air and owe their 
insulating properties to the low thermal conduc- 
tivity of air which, in the absence of convection 
and under dry conditions, has a value of 
2.45 x 10 -2 W m -I K -a at 273 ~ K. (The air may, 
of course, in some cases be replaced by another gas 
or a vacuum.) The insulating material can have a 
fibrous or granular structure (e.g. glass wool or 
diatomaceous earth) in which case the air is the 
continuous phase or it can be cellular (e.g. a poly- 

urethane foam). In the latter case, if the pores are 
open there will be two continuous phases; if they 
are closed there will be one continuous solid 
phase. 

For a foamed or porous material, the thermal 
conductivity X is often expressed as 

X = X s + X g + X r + X e  (40) 

where ks, Xg, Xr and Xe are contributions due to 
conduction through the solid, conduction through 
the gas, radiation and convection within the pores. 
This description is, however, misleading since it 
implies that the four processes are taking place 
independently and in parallel. At normal tempera- 
tures, however, radiation effects will be small and, 
if the cell diametex is less than 3 to 4 mm, con- 
vection effects will be negligible [43]. For 
isotropic materials with small pores, cavities or 
interstices it can then be assumed that the thermal 
conductivity is determined by the thermal conduc- 
tivities of the phases and the phase geometry. Use 
can then be made of the Hashin and Shtrikman 
bounds given by Equations 17 and 18. These 
bounds for the air/silica system are shown in Fig. 7 
in which the thermal conductivities of various 
insulating materials have been plotted against their 
densities. The thermal conductivity of silica 
(1.36 W m -a K -a) does not differ very greatly 
from that of gypsum (1.30 W m -a K -a) and the 
values for diatomaceous earth, rock wool, pow- 
dered gypsum and cellular gypsum all fall within 
the Hashin and Shtrikman bounds. It can be seen 
immediately from Fig. 7 that it will be impossible 
to make an isotropic composite from air and silica 
with a thermal conductivity of less than 
0.05 W m -a K -a unless the density of the com- 
posite is less than 625 kg m -3 . It may also be 
noted that the values for cellular gypsum in which 
the solid phase is continuous lie towards the upper 
bound while those for powdered gypsum lie 
towards the lower bound. 

With this type of system in which there is a 
large difference between the thermal conduc- 
tivities of the two components, the Hashin and 
Shtrikman bounds are very widely separated and 
more geometrical information is clearly needed to 
predict the thermal conductivity of the composite 
material. In Fig. 8 the Beran bounds calculated by 
Corson [26] are compared with the experimental 
values obtained by Sugawara and Yoshizawa [45] 
for the effective thermal conductivity of firebrick. 
The Beran bounds are closer than the Hashin and 
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Figure 7 Thermal conductivity of insu- 
lating materials. Theoretical curves: (a) 
Hashin and Shtrikman upper bound for 
air-silica, (b) Hashin and Shtrikman lower 
bound, (c) Davies relation for fibres ran- 
domly oriented in a plane. Experimental 
results: (1) cellular gypsum, (2) rock 
wool, (3) glass wool, (4) diatomaceous 
earth, (5) powdered gypsum (data from 
[169]). 
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Figure 8 Effective thermal conductivity of fire-brick 
(after Corson [26] ). (1) Hashin and Shtrikman bounds, 
(2) Beran bounds. (Experimental data from Sugawara and 
Yoshizawa [45 ] ). 

Shtr ikman bounds but  are still, however, widely 
separated. 

Fibrous insulating materials will usually be 
anisotropic but  more or less isotropic in a plane. 
With glass-fibre insulation under normal condit ions 
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6 0 0  7 0 0  

TABLE IV Thermal conductivity of fibrous insulating 
materials 

Conduction through air 
Convection 
Radiation 
Conduction through solid 
Total conductivity 

0.027 Wm -1 K -1 
0.003Wm-1 K-1 
0.002W m-1 K -1 
0.002Wm-1 K-1 
0.034Wm-1 K-1 

the thermal conductivi ty is largely determined by  
the conductivi ty o f  the enclosed air, but  radiation 
and convection can make significant contributions 
especially when compared with that  due to con- 
duct ion through the solid. Table IV [44] gives 
details of  the contr ibut ions due to the different 
mechanisms i f  it  is assumed that  these operate 

independent ly  and in parallel. 
I f  we neglect convection and radiation effects, 

the thermal conduct ivi ty of  a composite contain- 
ing fibres randomly oriented in a plane can be 
est imated using Equation 33. A theoretical  curve 
calculated from this equation assuming that,  for 
the fibres, X = I . 0 W m  -1 K -1 and p = 2 6 0 0 k g  
m -a , has been included in Fig. 7. It will be seen 
that  the experimental  results for the rock wool 
and glass wool  insulation follow the same general 
t rend but the experimental  values are appreciably 
higher. This is presumably the result of  the effects 



of  radiation, convection, fibre-fibre contacts, or 
out-of-plane fibre alignment. 

In the absence of effects due to radiation and 
convection, the thermal conductivity of a com- 
posite is, under normal conditions, independent of 
the particle size [46] or inter-fibre spacing 
provided these are (a) sufficiently small for the 
material to be considered macroscopically hom- 
ogeneous and (b) sufficiently large compared with 
the mean free path of the carrier (e.g. electrons or 
phonons) responsible for the conduction process. 
The use of the relations given in Section 2.2 does, 
however, involve the assumption that there is no 
discontinuity or barrier at the interface which, in 
the presence of a heat flux, would lead to the tem- 
perature on one side of the interface being differ- 
ent from that on the other. With particle-filled 
materials, e.g. filled elastomers, voids may be 
expected to lead to anomalous behaviour [47]. 

The conditions under which phase dimensions 
can become important in heat transfer are con- 
sidered in Section 3.4. 

2.5. Thermal  expans ion  coef f ic ien t s  
Thermal expansion behaviour can be important 
when composite materials are used in conjunction 
with other materials and when it is necessary to 
match the thermal expansion coefficient of one 
structural component with another. An important 
function of reinforcing fillers and fibres in plastics 
is the reduction and control of the thermal expan- 
sion. With dental filling materials a difference in 
thermal expansion between the filling material and 
the tooth substance can lead to a marginal gap 
(Fig. 9). With the composite filling materials which 

Figure 9 Scanning electron micrograph (X 100) showing 
marginal gap produced by difference in thermal expansion 
coefficients of dental filling material and tooth substance 
(courtesy Dr W. Finger). 

have a thermal expansion coefficient very much 
closer to that of tooth substance these effects are 
very much reduced [48]. 

The effective thermal expansion coefficients for 
a composite material are defined as the average 
strains which result from unit temperature rise in a 
traction-free material. In considering the response 
of composite materials to changes in temperature, 
the basic stress-strain relations which are used in 
defining the elastic moduli have to be modified to 
include the thermal expansion coefficient. Levin 
[49], in an important paper, showed that a simple 
relationship between the effective expansion coef- 
ficients and the effective elastic moduli could be 
derived for two-phase materials using the thermo- 
elastic stress-strain relations. For an isotropic 
composite with two isotropic phases the basic 
relationship can be written in the form 

[(1/K1)--(1/K2)] K-~-- 

(41) 

where ~1, c~2 are the linear thermal expansion 
coefficients of the two phases, K1, K2 are their 
bulk moduli, K* and o~* the effective bulk 
modulus and effective thermal expansion coef- 
ficient of the composite, and the bars over the 
symbols indicate volume averages [50]. The re- 
lationship represented by Equation41 has also 
been established by Schapery [51], Cribb [52] 
and Steel [53]. 

The form of Equation 41 gives an indication 
of how the effective expansion coefficient will 
deviate from the simple mixture rule, o~* = if, as a 
result of the mechanical interactions represented 
by the final term. If one of the phases is a fluid (or 
a low shear modulus matrix) and the other consists 
of rigid particles 

K--7 ~-- (42) 

and it follows from Equation 41 that ~* --~ ~, and 
the mixture rule will apply [51 ]. 

It also follows from Equation 41 that if we 
know the values of K1 and K2 and can calculate 
K*, then we can also calculate ~* from ~1 and e2 
for any given volume fraction Vt. If we cannot 
calculate K* but can set bounds on its value then 
we can also set bounds on the value ofc~*. 

The simplest case for a statistically isotropic 
material is that of a dilute suspension of spherical 
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particles when we can make use of the relation 
derived by Hashin [54]. 

3K2 + 4~2 
K* = K2 + (KI --K2) 3K1 +4pa V1 

(43) 

for a dilute suspension in which spherical particles 
with bulk modulus Ka are dispersed in a matrix 
with bulk modulus K2 and shear modulus ~2. This 
relation may be expected to apply when the 
volume fraction of the particles VI does not 
exceed a few per cent. From Equation 41 and 43 
we obtain 

a2 -t (at --~s)KI(3K2 +4us)Va 
K2 (3Ka + 4/a2) + (K 1 --K2) (3K2 + 4U s ) V1 

(44) 

or, neglecting the final term in the denominator of 
the last term 

0~* = (~2 + (O~1 - - ~ 2 ) K I ( 3 K s  + 4 / / 2 ) V l  

K2(3K1 + 4/.t2) 

(45) 

For higher particle concentrations, the com- 
posite sphere assemblage described in Section 
2.2.1 may be a more realistic model since it incor- 
porates an element of randomness and its use 
involves the implicit assumption that each com- 
posite sphere is, in effect, surrounded by com- 
posite material instead of matrix. For the effective 
bulk modulus of this system, Hashin [24] ob- 
tained the exact relation 

(3K2 + 4gt2)V1 
K2 + (K, 

- -K2)3K 1 -  + 4~ts + 3(Ks --K1)V," 

(46) 

When Va is small, the last term in the denomi- 
nator of the final term can be neglected and the 
relation then becomes identical with Equation 43. 
An expression corresponding to Equation 46 for 
the effective bulk modulus was obtained earlier by 
Kemer [55] but the method of derivation is diffi- 
cult to understand [5]. 

If we substitute Equation 46 in Levin's 

equation Equation 41 we obtain the relation 

(as -- a l)K1 (3Ks + 4/~2 )V1 
@* ~- 0t 2 - -  

K2 (3K 1 + 4/~2 ) + 4(K 1 --K=)/a2 Vl 

(47) 
for the effective linear thermal expansion coef- 
ficient of the composite sphere assemblage. This 
relation can also be obtained from the expressions 
given by Kerner [55]. It may be noted that when 
V 1 = 0, o* = a2, when V1 = 1, a* = ~1 and when 
tas = 0 , ~ *  =alVa +%I12. 

Using the relationships 

E E 
K - ) - - 2 v  ~ 3 ( 1  and # - 2 ( 1 + v )  (48) 

where E is Young's modulus and v is Poisson's 
ratio, Equation 47 can be written in the form 

~* = ~ 2  - ( a s  - ~ 1 )  V l  x 

3(&/Es) (1 -vs)  
(E1/Es) [2V,(1 - -2v2)+(1 +vs)] +2(1 --2vl)Vs 

(49) 

which corresponds with the relations obtained by 
Wang and Kwei [56] and Fahmy and Ragai [57] 
from a consideration of the displacements and 
stresses in a composite sphere. 

When the composite consists of a mixture of 
two kinds of particle, rather than particles of one 
phase dispersed in a continuous matrix, the SCS 
approximation described in Section 2.2.1 may be 
more appropriate since, in this case, each phase is 
considered on an equal footing. The effective 
thermal expansion coefficient a* will be given by 
Equation 41 with K* determined by the relations 

K* = Ks +(K1 --K2) 3K* +4/1 '  V1 
3K1 + 4g* 

(5o) 
/~* = g2 +(Pq - /12 )x  

5(3K* + 4,u*)V~ 
(51) 

9K* + 8/2*+ 6(K* + 2/a*) (/1, i/a*) 

These two expressions which were derived 
independently by Budiansky [58, 59] and 
Hill [60] will, in general, have to be solved nu- 
merically to obtain K*, but decouple when vl = 
v 2 = 0.2 [59]. Similar expressions, which reduce 
to Equations 50 and 51, were also given by 
Kerner [55]. The use of the self-consistent 
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method for determining thermoelastic moduli has 
also been discussed by Laws [61]. 

If the geometry of the composite is not clearly 
defined it can be argued that it is better to use 
rigorous bounds rather than an uncertain approxi- 

mat ion .  Bounds on the effective thermal expan- 
sion coefficient of an isotropic composite Can be 
obtained by using Paul's bounds [62] on the bulk 
modulus: 

1 1  
/~ < ~ - / <  �9 (52) 

As we have seen, the lower bound on K* rep- 
resented by Equation 42 and corresponding to 
uniform stress in the composite leads to the 
"mixture rule", a * =  a, when substituted into 
Equation 41. The upper bound on K* correspond- 
ing to uniform strain and given by 

K* = K1 V1 +K2 V2 (53) 

leads with Equation 41 to the relation 

O~* = K l O t l V I  + K2az Vs = Ks~_ 
K1V1 + K2 V2 K ' 

(54) 

which is the expression suggested by Turner [63] 
for the thermal expansion coefficient of a two- 
phase composite. 

Closer bounds on the value of a* can, however, 
be set by using the bounds derived by Hashin and 
Shtrikman [64], Hill [65] and Walpole [66] for 
the bulk modulus, which may be written in the 
form 

K~_) = K1 + 

v~ 
[1/(K2 - -K , ) ]  + [3V1/(3K1 + 4U,)] 

(55a) 

K~+) = Ks + 

V1 
[1/(KI --K2)] + [3V2/(3Ks + 4/~2)] 

(55b) 

where ~zz >/~1. When /11 >/12, the relations for 
the upper and lower bounds are reversed and when 
/am =/~z, the bounds coincide. 

These bounds and the Levin relationship 

(Equation 41) lead to the following bounds for 
0 ~ * ;  

( o q  --a2)K2 (3K1 + 491 )V2 
0~_) = O~ 1 - -  

KI(3Ks + 491) + 4(Ks --K1)gl V2 

(56) 

(a2 -- a a )K 1 (3K2 + 4/~s) V1 
0~+) = 0~ s - -  

K2 (3K1 + 4#s) + 4(K1 --Ks );us VI' 

where 

(57) 

~2 - -  0~1 
- -  > 0  and g 2 > g l .  
Ks --K1 

When ( a s - - a a ) / ( K 2 - K 1 ) < 0  or /a2 < # 1 ,  the 
bounds are reversed. When a s = a 1 or/~s =/-ta, 
the bounds coincide. 

It should be noted that Equation 57 for the 
upper bound a~+) is identical with Equation 47 
for the effective thermal expansion coefficient of 
the composite sphere assemblage in which spheres 
of material 1 are surrounded by shells of material 
2. Similarly, Equation 56 will correspond to the 
relation for the effective thermal expansion coef- 
ficient of a composite sphere assemblage in which 
spheres of material 2 are surrounded by shells of 
material 1. This means that, as with the bounds for 
bulk modulus [5], the bounds given by Equations 
56 and 57 are the best possible bounds for the 
effective thermal expansion coefficient of an 
isotropic composite of arbitrary geometry. 

If, however, further statistical information on 
the composite geometry is available closer bounds 
can be set than those given by the Hashin and 
Shtrikman results. Thus, bounds for the bulk 
modulus have been derived by Beran and 
Molyneux [67] and McCoy [68] using the infor- 
mation contained in the three-point correlation 
function. These bounds are, unfortunately, 
complex expressions involving derivatives and 
integrals of the correlation functions and, in their 
original form, cannot be easily used except in 
special cases. Miller [69], however, showed that 
bounds on  the bulk modulus of the two-phase cell 
materials described in Section 2.2.1 could be ob- 
tained in the form of relatively simple algebraic 
functions from the Beran and Molyneux ex- 
pressions. These bounds depend on the values of 
K1, K2, /~1, gs, V1 and V2 and on the two par- 
ameters Ga and Gs which describe the cell 
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T A B L E V Axial and transverse thermal expansion coefficients for transversely isotmpic aligned fibre-gomposites 

Levin [49 ] 

Schapery [51 ] 

Rosen [70] 

Van Fo Fy [71] 

a* = a2 + ( a , - o q )  (vl - v 2)E* [(1 + v, )(E* -- V2E 2 ) = (1 + v2 ) V~ E i I 

( o , .  
at  = a2 + ~ v. uz,~*[(1 + v,)(V2u*aE 2 ---v~E*)+ V iv~E , ( I '+  v2) ] 

( 1 - 2 )  a 

V-u-} 

r - - -  (1)] 
a t  = 6 + [(1]K, ) -- (1]K,)] [2k t Ea* - -  

a~ a 2 + (a 2 - - a a ) V a - -  (or 2 - - a l ) ( 1  +V "(v2 --va*) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

where the symbols have the following significance 
a*, a~ effective axial and transverse linear thermal expansion coefficients. 
a I , a 2 linear thermal expansion coefficients of fibre a~d matrix. 
vl, V 2 iPoisson's ratio for fibre and matrix. 
E*, u* Young's modulus and Poisson's ratio of composite under axial loading. 
E~, E 2 Young's moduli for fibre and matrix. 
K 1 , K 2 bulk moduli for fibre and matrix. 
k~ transverse plane-strain bulk modulus of composite and bars over symbols indicate volume averages, e.g. 

- -  / ' - ~  V 1 V ~  

Ea = E ta  1V; + E : a  2V 2 and kK) = K-, + K~ 

geometries of  the two materials.  Miller showed 
that  the values o f  Ga and G2 must  lie between 
and �89 and that ,  as for the dielectric case (see 
Section 2.2.1), a value o f  } corresponded to a 

spherical shape and a value o f  �89 to a plate-like 

shape. 

The bounds for the asymmetrical cell material 
take the following form (after correcting some 
typographical  errors in the equations given in 
Miller's paper),  

where a = K1 ~Ks ,  (3 = gt/1~2,  0 = V1,  3' = la2/K2. 
The bounding equations for the symmetrical  cell 
material can be obtained by setting G1 = G2 in 
Equations 58 and 59. 

Up to now, it has been assumed that  bo th  the 
composite and the two consti tuent  phases are 
isotropic.  The more general case of  multiphase 
anisotropic composites with anisotropic phases has 
been considered by Rosen and Hashin [50] who 
derived bounds bo th  for the effective thermal 

(K, K2), ]  ~ - c~] ~ 1 + ~(c~ T 1) - - ( a  - 1)~ + 27(1  - $,~ + -~fi(4~ - 1) + 3(~  - 1)[a~ (1 - & - c~  ~ ] 

(58) 

: K~_) = a I/2 / ~ b ( I - - a )  
(K1K2) 1/2 t 

( )1_1 
+ ol - -  1 + ~b(a --  1) + ~ (o~/l~y) [3(/3 --  1){3 [G~ 4~ 2 --  G1 (1 --  ~b) 2 ] - ~ qS}+ 3/3 --  11 

(59) 
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expansion coefficients and specific heats. In the 
case of  two-phase composites the bounds coincide 
and give unique relations between the effective 
expansion coefficients and the effective elastic 
moduli. Rosen and Hashin also showed that these 
relationships for the two phase composite could be 
derived directly using the methods developed by 
Levin which they extended to include anisotropic 
phases. 

In the important case of  a transversely isotropic 
aligned fibre composite with two isotropic phases, 
a number of  expressions have been derived for the 
axial and transverse thermal expansion coef- 
ficients. These are given in Table V. By making use 
of  the relationships between the elastic moduli 
given by Equation 48, Hill's relations between the 
fibre composite modufi [72], and with some 
effort on the algebra, it can be shown that (a) the 
Levin, Schapery and Rosen expressions for the 
axial expansion coefficients are equivalent, (b) the 
Levin and Rosen equations for the transverse 
expansion coefficient are also equivalent, and (c) 
these expressions for the axial and transverse 
expansion coefficients then lead to the relation- 
ship given in Equation 65 between a* and 
previously given by Van Fo Fy [71]. 

From these relationships, bounds on the 
thermal expansion coefficients can be obtained 
from bounds on the moduli. For example, with 
Equations 60 to 62 in Table V, we can make use 
of  the bounds derived by Hill [72] for the axial 
Young's modulus, 

4Vl V2(vl --v2) s 
E*(+) --. Ea V1 + E2 V2 + 

V~/ks + V:/k~ + 1/U, 

(66) 

4V1 Vs(va - -v2)  2 
E*(_) = E 1 W 1 --~ g 2 W 2 ~- 

V1/k2 + Vs/kl + 1 has 

(67) 

where k is the plane-strain bulk modulus given by 

k = K+�89  (68) 

Alternatively, we can make use of  the SCS 
method and either use the equations in Table V 
with the relations given by Hill [73] for the elastic 
moduli, or use the explicit formulae given by Laws 
[74] for the overall thermoelastic moduli. 

Rosen [70] suggested the composite cylinder 
assemblage was an appropriate model and a similar 

approach has been adopted by Schneider [75,76] 
who derived the following expressions for the 
thermal expansion coefficients using a model in 
which the fibres were aligned in a hexagonal array: 

. a 2  - -  a 1 
% = al  + (68a) 

(V~/(1 -- Va))E~/Ez + 1 

= as - ( a s  - a ~ )  x 

. 2(v~ - -v=  - -  1) 1.1 V 1 

1.1 Vl(2v~ + v2 -- 1 ) - - ( 1  + u2) 

v2 E1/E2 ] 
El~E2 + (1 -- 1:1 V1)/1.1 VlJ " 

(68b) 

It may be noted that when vl = v2, Equations 
66 and 67 reduce to 

E* = E~ V1 + E2 V2. (69) 

On substituting this simpler relation for the axial 
Young's modulus in Equation 60 we obtain the 
simple approximate expression 

, alK1 V1 + a2K2 V2 
% = (70) 

K1V~ + K2 V2 

alE1 V1 + a2E2 V2 
* (71) a a ~ 

E1V~ + E~ Vs 

which in most cases will provide an adequate ex- 
pression for the axial thermal expansion coef- 
ficient. 

Some of the theoretical relationships described 
above are compared in Fig. 10 with the exper- 
imental results obtained by Schneider [75] for the 
axial and transverse thermal expansion coefficients 
of  an aligned glass-fibre composite with an epoxy- 
resin matrix. The theoretical curves have been 
calculated using the following values for the 
properties of the glass fibre and epoxy-resin 
matrix. Glass: Ea = 71.59 GN m -s ,  ua = 0.25, 
al  = 4.8 X 1 0  - 6  K -1  , Ka = 47.73 GN m -z, 
/a I = 28.64 GN m -s , kl = 57.28 GN m -2 . Epoxy- 
resin: E2 = 3.14 G N m  -2, vl ,  = 0.4, as += 
6 6 x  10 - 6 K  -a, /(2 = 5 . 2 3 G N m  -2, #2 =1.121 
GN m -2 , k2 = 5.60 GN m -2 . The experimental 
results for a* lie close to the lower bound obtained 
using Hill's relations for the bounds on the moduli 
(the theoretical curve corresponding to Equation 
71 has not been plotted since it is extremely close 
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Figure 10 Thermal expansion of aligned glass-fibre composites�9 (1) Lower bound for aa, (2) upper bound for aa*, (3) 
lower bound for a t ,  (4) upper bound for at, calculated using Equations 60 and 61 with Hill's bounds on E~. (5) SCS 
, approxamation for a t , (6) Schneider s equation for a t . Experimental results [75] : oaxaal thermal expansion transverse 
thermal expension coefficient�9 

to this lower bound), The experimental values for 
fall between the calculated bounds and lie close 

to the curves obtained using (a) the SCS approxi- 
mation for the moduli and (b) Schneider's model. 

From Fig. 10 it will be seen that, at low fibre 
volume fractions, the transverse expansion coef- 
ficient of  the glass f ibre-epoxy resin composite 
will be greater than that of  the matrix. This effect 
will be especially noticeable with fibres of high 
modulus and low axial expansion coefficient" (e.g. 
boron or carbon) in a low-modulus matrix (e.g. 
epoxy resin) [70]. 

The coefficient of  linear thermal expansion of a 
unidirectional laminate at an angle to the fibre 
direction can be obtained from purely geometrical 
considerations [77]. At an angle 0, the expansion 
coefficient a~ of a transversely isotropic laminate 
will be given by 

~ = a t  sin20 + aa cos20. (72) 

Once the thermal expansion properties of  a 
single layer of fibre-reinforced material have been 
derived, classical laminated plate theory [78-80]  
can be used to calculate the behaviour of a lami- 
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nate in which the layers are of various orien- 
tations. In this theory each layer is treated as a 

homogeneous anisotropic material in a state of 
plane stress. The thermal expansion coefficient 
and the thermal stresses in multi-ply laminates 
have been considered in some detail by Schneider 
[76]. 

A balanced laminate in which the plies are 
oriented at angles of 0 ~ 60 ~ - 6 0  ~ and 0 ~ will 
show pseudoisotropic in-plane elastic behaviour 
and the thermal expansion within the plane will 
also be quasi-isotropic. Halpin and Pagano [81], 
however, showed that a laminate need not necess- 
arily be quasi-isotropic with respect to in-plane 
stiffness for it to show isotropic in-plane thermal 
expansion behaviour. Isotropic thermal expansion 
within the plane will be shown by any uncoupled 
laminate with equal stiffnesses in two in-plane 
directions. 

The effective in-plane thermal expansion coef- 
ficients aT and a~ for "angle-ply" laminates in 
which the fibres are arranged at angles of  +0 and 
--0 to the 1-direction have been evaluated both by 

Halp in  and Pagano [81-383] and by Dow and 



Rosen [84, 85]. With these angle-ply laminates a 
"scissoring" or "lazy tongs" type of action can 
occur and, with appropriate values of 0, lead to a 
zero or even a negative thermal expansion coef- 
ficient in one direction. Dow and Rosen found 
that a ratio of filament to matrix modulus of at 
least 25 to 50 was required to achieve pronounced 
"scissoring". Their theoretical analysis indicated 
that the boron/epoxy system would not quite give 
a zero thermal expansion in any of the 2 - D  
configurations examined. However, a zero thermal 
expansion could be achieved theroretically with a 
3 - D  configuration in which half the filaments in 
the comparable 2 - D  configuration were rotated 
about the 1-axis into a plane at 90 ~ to the original 
plane. The general effects predicted both by Dow 
and Rosen and by Halpin and Pagano have been 
confirmed experimentally with carbon fibres in 
epoxy resin (86-89).  With this system, negative 
coefficients of thermal expansion in one direction 
can be achieved. The thermal expansion of lami- 
nated fibre composites in the thickness direction 
has been investigated by Fahrny and Ragai-Ellozy 
[9O]. 

Approximate values for the thermal expansion 
coefficients of oriented short fibre composites can 
be obtained [91] by estimating the stiffness in the 
fibre direction from that of the corresponding 
continuous fibre composite and assuming that 
Poisson's ratio for the matrix is the same as that 
for the fibre. Laminate theory can then be used to 
obtain the thermal expansion coefficient of 
randomly oriented short fibre laminates. If the 
aspect ratio is sufficiently high the properties of 
the randomly oriented discontinuous fibre com- 
posite can be predicted from the behaviour of a 
pseudo-isotropic laminate reinforced with 
continuous fibres [92]. 

Up to this point it has been assumed that the 
phases in the composite remain in contact at the 
interfaces and that, in particular, with two solid 
phases the composite remains fully bonded. The 
effects of internal stresses arising from differences 
in the expansion coefficients of the components 
have not been considered. These internal stresses 
can be important not only in the fabrication of the 
composite but also in determining its subsequent 
behaviour. 

If we take the composite sphere assemblage as a 
model system, the interfacial pressure can be 
obtained by finding the pressure which has to be 
applied to the outside of the central sphere and 

the inside of  the surrounding shell to compensate 
for the misfit due to differences in thermal expan- 
sion of the two materials. For a rise in temperature 
of AT the interfacial pressure P in an initially 
stress-free system is given by 

p = - -  2(% --%) A T E i E  ~ 
2E= V= (1-- 2v 1)+2E 1V l ( 1 - 2 v = ) + E  t ( l + v  2) 

(73) 

This relation corresponds with that given by 
Fahmy and Ragai [57] after correcting for an 
apparent error in sign in their published equation. 
When V 1 + 0 ,  the expression reduces to that ob- 
tained by Selsing [93] for a dilute suspension. 

If ~2 > 0q and AT is negative, then P will be 
positive and there will be a normal compressive 
stress at the interface. Thus if a particle- 
reinforced composite is fabricated at a tempera- 
ture above ambient, a positive interfacial pressure 
will develop on cooling the composite to room 
temperature if the thermal expansion of  the 
matrix is greater than that of the inclusions. On 
the other hand, if o~2 > al and the temperature of 
an initially stress-free composite is raised, a normal 
tensile stress will develop at the interface. This 
may be sufficient to lead to debonding. If separ- 
ation of the two components occurs at the 
interface then the expansion of the matrix will no 
longer be restrained by the inclusions and the 
thermal expansion of the composite will then be 
equal to that of the matrix [56 ,94 ,95] .  With 
fibre-reinforced materials, the internal stresses 
resulting from changes in temperature may lead to 
multiple cracking of the matrix [96]. In consider- 
ing the development of internal stresses during the 
fabrication of composites, other dilatational 
effects, e.g. the shrinkage of  resins on cure, must 
also be taken into account. These effects are dis- 
cussed in the following section. 

2.6.  Swelling and shr inkage 
Volume changes in the solid components of a 
composite material may arise not only as a result 
of changes in temperature but also from other 
causes. Two of  the more important are: 

(a) a phase change or chemical reaction e.g. 
polymerization or cross-linking; and 

(b) the absorption of gases, liquids or vapours. 
The effects of phase changes or chemical 

reaction during fabrication are of  importance with 
a wide range of composites: excessive shrinkage of 
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one component can result in high intemal stresses 
which may lead to premature failure or even 
preclude successful fabrication. Matrix shrinkage 
also has important indirect effects on the mechan- 
ical behaviour of  fibre composites since the 
consequent internal stresses can determine the 
frictional forces at the fibre-matrix interface. The 
problem of deducing the shrinkage of  a composite 
in terms of the properties of  its components is also 
of importance in the prediction of shrinkage in 
concrete [97,98] .  

In principle, as indicated by Cribb [52], 
Equation 41 for the thermal expansion of a two 
phase composite can be expected to apply equally 
well to the prediction of strain arising from the 
shrinkage of  one or both of the components as a 
result of phase changes or chemical reactions such 
as polymerization or the setting of cement. It will 
be merely necessary to replace the linear thermal 
expansion coefficients by the corresponding linear 
strains resulting from shrinkage. Indeed, relations 
of the type given in Section 2.5 should in general, 
be applicable not only for the prediction of the 
shrinkage of composites but also for the analysis 
of the resulting internal stresses. With processes 
such as resin polymerization or the setting of 
cement there is, however, a continuous change 
in the viscoelastic properties of the material and 
there will be some difficulty in deciding on 
appropriate values both for the linear shrinkage 
and the elastic moduli of the resin or the cement. 

The importance of swelling behaviour was 
clearly recognized in early work [99] on cellulose 
fibre composites since with these systems both the 
fibre and resin matrix behaved as swelling gels 
which could absorb or desorb water depending on 
the environmental conditions. The consequent 
swelling and shrinkage of the composites could 
have serious adverse effects on their performance 
in structural situations. With composites based on 
glass, carbon or boron fibres, swelling and 
shrinkage arising through sorption or desorption of 
water does not have such a marked effect since 
although, with glass fibres in particular, water may 
be absorbed at the interface, these fibres are not 
swelling gels and do not absorb water in the same 
way as cellulose fibres. Swelling effects can, how- 
ever, still be very important in the absorption of 
water by nylon composites and in the absorption 
of organic solvents by a wide range of reinforced 
polymers and elastomers. 

Halpin and Pagano [81] considered that the 
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deformation of a solid induced by swelling was 
equivalent to that caused by a temperature change 
and applied this concept to the analysis of the 
swelling behaviour of a unidirectionally reinforced 
composite sheet using Schapery's [51] formulae 
for linear thermal expansion coefficients. They 
showed that it was possible to predict the expan- 
sional strains of a nylon-reinforced elastomer in 
benzene within the limits of their experimental 
precision. They also showed that it should be 
possible to design laminates which would contract 
in one direction on swelling. 

It would appear, however, that the Halpin and 
Pagano analysis involves the assumption that the 
weight of solvent absorbed by a given volume of 
polymer is not affected by fibre reinforcement and 
that the expansional strains in the composite are 
determined solely by the elastic deformations of 
the components. There would seem to be some 
doubt as to how far this assumption is justified at 
any rate with composites based on polymers to 
which the Flory-Rehner[100,101] theory of 
swelling is applicable. On this interpretation the 
condition for the equilibrium swelling of a cross- 
linked polymer of the conventional type in which 
the ends of the chains are united tetrafunctionally 
is given by 

ln(1 -- V:) + V2 +/2V~2 + 

(pVo/Me)  (V2 u3 __ V2/2) - Ul --/-to R T  (74) 

where V2 is the volume fraction of unswollen 
polymer, # is a dimensionless parameter charac- 
terizing the interaction energy of solvent and 
polymer, p is the density, Vo is the molar volume, 
Me is the number average molecular weight of the 
polymer chains between the cross-links, #1 the 
chemical potential of the solvent in the polymer 
and/2 o the chemical potential of the pure solvent. 
For equilibrium with the pure solvent, //1 =/ao 
and the swelling of the unconstrained polymer will 
be given by 

ln(1 - -V2)+ V2 + uV~ + 

(pVo/Mc)  (V2 '/3 -- V2/2) = O. (75) 

If the polymer is under a hydrostatic pressure 
P, the swelling ~11 be given by 

l n (1  --  V2) + V2 + / IV~  + 

(pVo/Me)  ( v 2  ~/3 - v2 /2 )  - 
eVo 
R T  

(76) 



when the correction t e r m , -  V2/2 given by Flory 
[100] is included in Treloar's [101] equation. If 
swelling is constrained in one direction but can 
take place in the other two directions, we have 
[101,102] 

ln(1 -- V2) + V2 + ~V~ + (pVo/Me) 

(1 -- V2/2) = 0. (77)  

The application of this relationship to the 
swelling in toluene of unidirectionally reinforced 
rubber composites has been examined by Coran 
et al. [102]. Although the constraint due to the 
reinforcement reduced the amount of solvent 
absorbed, the swelling in a direction perpendicular 
to the reinforcement was actually higher than that 
in the unreinforced material. Good agreement was 
obtained between the experimental results and 
those predicted by Equation 77. The effect of 
mechanical constraints on the sorption of water by 
cell wall material in wood was examined by Barkas 
[103] who considered that an elastic sheath sur- 
rounding the cell wall material exerted a natural 
restraint on the swelling of the wood substance. 
The swelling of wood from the standpoint of 
composite theory, has also been considered by 
Cave [104]. 

As with thermal expansion, differential swelling 
of matrix and reinforcement in a composite can 
lead to debonding at the interface. Thus, for 
example, with polyester fibre composites, resin 
swelling in water at 100 ~ C was sufficient to over- 
come the effects of resin shrinkage during cure, 
producing a net tensile stress across the fibre-resin 
interface with the result that both untreated 
carbon fibres and untreated glass fibres were 
rapidly debonded [105,106].  At 20 ~ C, untreated 
glass fibres were debonded but the interfacial bond 
was retained with both the carbon fibres and 
treated glass fibres. 

3. Properties determined by phase 
dimensions and structural periodicity 

In the preceding sections, the properties under 
consideration have been dependent on the volume 
fractions and geometries of the phases but not on 
the phase dimensions (provided these are small 
compared with t h e  size of the specimen). The 
expressions given for the effective properties do 
not include any dimensional parameters so that, 
for example, the effective dielectric constant of a 
dilute suspension of spherical particles does not 
depend on the particle radius. 

The dimensions and periodicity of a composite 
structure may, however, have an important effect 
on the properties when they become comparable 
with, for example, the wavelength of incident 
radiation, the size of magnetic domains or the 
thickness of space charge layers at interfaces. 
Interface effects will, in general, become more 
important as the dimensions are decreased. 

The effects will be especially noticeable in 
composites in which the particle radius is less than 
some critical value and in composites with a 
periodic structure in which the spacing between 
aligned fibres or lamellae is fixed and defined. 
Composites with structures of the latter type can 
be prepared by the unidirectional solidification of 
eutectics or eutectoids. With eutectics, the inter- 
lamellar period X is given by X2R = a constant 
where R is the imposed growth rate; for eutec- 
toids, X 4 R = a constant [107]. Another possible 
method of preparation is by the unidirectional 
decomposition of non-crystalline solid single-phase 
materials [108]. 

Properties dependent on phase dimensions and 
periodicity include some of the optical, magnetic 
and superconducting properties. Under certain 
conditions, phase dimensions can also become 
important in heat transfer through composite ma- 
terials. 

3.1.  Optical  and related e f fec ts  
Many of the optical effects which depend on struc- 
tural dimensions also depend in a complex way on 
other factors, the theory can be extremely compli- 
cated, and a detailed discussion is beyond the 
scope of this review. The more important effects 
arise in light scattering and diffraction. 

For very small particles with a size very much 
less than the wavelength X of the incident light, 
the intensity of scattered light is given by the 
Rayleigh relationship which for unpolarized inci- 
dent light and a single particle takes the form 

Io 87r 4 a 2 
I - r2 X4 (1 +cos20),  (78) 

where I is the intensity of the scattered light at a 
distance r from the particle, Io the intensity of the 
incident light, a the polarizability of the particle, 
X the wavelength, and 0 the angle between the 
scattered and incident light. The quantity 
Igor 2/Io V where V is the volume of the particle is 
known as the Rayleigh ratio R(9o). 
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Figure 11 Extruded polystrene-polybutadiene-polystyrene block co-polymer (a) low-angle X-ray diffraction 
[ i 18 ] : (i) beam parallel to extrusion direction; (ii) beam perpendicular; (b) electron micrographs [ 119 ] of sections cut 
(i) perpendicular and (ii) parallel to extrusion direction. 1.0. (Courtesy Professor A. Keller and Dr J. Dlugosz.) 

For an assembly of  particles we can assume, in 
the simplest approximation,  that the particles are 
very far apart and the intensity of  the light scat- 
tered by N particles will then be given by 

N Io 87r4 a 2 
IN - r2 X4 (1 + cos20). (79) 

The polarizability a depends on the volume V 
of  one particle so that a 2 will be proportional to 
V~. With a given volume of  particles, N will be 
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inversely proportional to V. The light scattered by 
a given volume concentration of  the particulate 
phage will, therefore, increase as the particle size 
increases. This general principle forms the basis for 
the determination of  the molecular weights of  high 
polymers (and simpler molecules) in solution by 
fight-scattering measurements [109] using the 
theory developed by Debye [110, 111].  

The effect o f  particle size on the light scattering 
behaviour in a solid medium is very well illustrated 



Figure 11 Continued. 

by the work of Maurer [112] on crys ta l  
nucleation in titania-containing glasses. Light- 
scattering measurements were used firstly to 
detect the presence of scattering centres and study 
the initial stages of crystal nucleation, and 
secondly to estimate the average crystal size and 
concentration so that the crystallization process 
could be followed and the crystal-growth rate 
measured. The three important parameters which 
were measured were Rayleigh's ratio, the dissym- 
metry coefficient (the ratio of the intensities of 

scattering at angles symmetrical about the 90 ~ 
position) and the degree of depolarization (the 
ratio of light intensities of vertical and horizontal 
polarization scattered at 90~ Measurements on 
the glass before heat-treatment showed that the 
scattering was about three times as high as that 
which would be expected from the refractive 
index and the depolarization was about one-third 
of the expected value. These results suggested that 
a glass-in-glass type phase separation had occurred 
during the preparation of the titania-containing 
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glass. On heat-treatment at the lowest temperature 
(725 ~ C) there was initially a six-fold increase i'n 
depolarization without any change in dissymmetry 
and only a 30% increase in total scattering. This 
indicated that the scattering centres were 
becoming anisotropic and it was concluded that 
crystallization was taking place within the glass 
particles. The growth of the crystalline centres as a 
result of heat-treatment was followed by 
measurement of the average particle size. This was 
deduced from measurements o f  Rayleigh's ratio 
and the volume concentration of the particulate 
phase using a theory developed by Maurer which 
indicated that, if  the number of  crystalline 
particles remained constant, the crystal diameter 
should vary as the sixth root of the Rayleigh 
ratio. The volumetric concentration of the crystals 
was obtained from the integrated intensity of an 
X-ray diffraction line and this was then used to 
obtain the crystal diameter from the Rayleigh 
ratio. Crystal diameters of from 70 to 175 A 
obtained by this method were in good agreement 
with those obtained from X-ray line broadening 
measurements. 

Light-scattering behaviour has also been shown 
to depend on the domain size in phase-separated 
borosilicate glasses [113] and on spherulite size in 
films of polyethylene [114, 115]. 

Periodicity in a composite structure can result 
in diffraction effects if the wavelength of the inci- 
dent light is of the same order as the composite 
period X. The behaviour of the aligned lamellar 
Co2Si-Co eutectoid [10] is given as an example 
by Albers [1]. By preferentially etching the 
surface of  a specimen in which X was equal to 
0.5/am, a periodic relief structure of the ridge type 
was obtained which showed diffraction spectra 
when illuminated with white light. The diffraction 
patterns obtained by optical reflection from the 
polished and etched surfaces of directionally sol- 
idified eutectic alloys have been discussed by 
Clarke [116] who has shown how they may be 
used tor the detection of surface symmetries and 
for the measurement of interparticle spacing. 

The spacing between the NaF rods in an 
NaC1-NaF eutectic has been obtained by 
reflecting laser light from the polished surface of a 
transverse section and measuring the distance to 
the first diffraction ring [117]. Similarly, in low- 
angle X-ray diffraction studies of  an extruded SBS 
(polystyrene-polybutadiene-polystyrene) block 
co-polymer~ it was found that sharp single-crystal 
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diffraction patterns possessing hexagonal 
symmetry were obtained [118] and it was shown 
both from the X-ray and electron microscopic 
evidence [119] that the material consisted of  
polystyrene cylinders embedded in a poly- 
butadiene matrix with the cylinder axes along the 
extrusion direction. The polystyrene rods were 
150 A in diameter and arranged in a hexagonal 
lattice with a lattice parameter of 300 A. The low- 
angle X-ray diffraction patterns [118] are shown 

in Fig. 1 la and the electron micrographs [119] in 
Fig. l lb.  This X-ray and electron microscope 
evidence has been used for the interpretation of 
the mechanical properties of  "single crystal" 
samples of SBS co-polymer [120]. 

Sievers [117] has discussed the diffraction 
behaviour of dielectric eutectics and described 
results obtained in an investigation of the infra-red 
transmission of the NaC1-NaF eutectic. The 
longest wavelength incident on the crystal 
satisfying the diffraction condition for rods 
arranged in a hexagonal array would be expected 
to be given by 

Xmax = x/Sn*d,  (80) 

where Xmax is the wavelength of the incident light, 
n* the effective refractive index and d the 
spacing between nearest neighbours. The agreement 
between the calculated value for Xmax and the 
experimental value for strong absorption was 
within 5% tor d = 4.5/am and within 2% for d = 
5.8/am. 

Provided the periodicity is very much less than 
the wavelength of the light, a composite material 
containing aligned elongated particles of an op- 
tically isotropic material in an optically isotropic 
matrix (with a different refractive index) will 
exhibit birefringence (or double refraction). This is 
a straightforward consequence of the anisotropic 
dielectric properties and the effective refractive 
indices can be calculated from e.g. Equations 25 
and 26 using the relationship, n * =  (e*) 1/2, be- 
tween the effective refractive index n* and the 
effective dielectric constant e*. For a material 
containing aligned cylinders it is then easily shown 
[117] that 

# 
ne = ( V l e l  + V2a2) 1/2 (81) 

and 

{ Io2o-v1)+ ,(1 + 
= [c,(--i u v,) + c,(1 - T)Jj 

(82) 



and the c'6fnposite betiaves as a uniaxial material 
with the optic axis along the cylinder axis. 

Composite systems containing aligned metallic 
rods in a semiconductor or an insulator can also 
act as polarizing falters when the diameter of the 
rods is small compared with the wavelength. With 
the unidirectionally solidified InS-NiSb eutectic 
the rod diameter is typically about 0.5 #m and 
with a layer 70 #m in thickness the polarizability 
at wavelengths above 12/~m is at least 0.99. 
Electromagnetic waves with an electric vector 
vibrating parallel to the axis of the rods lose 
energy and transverse the composite with reduced 
amplitude. A wave with an electric vector perpen- 
dicular to the rods will, however, be damped very 
little [7]. 

The behaviour in the microwave region of arti- 
ficial dielectrics consisting of a lattice of con- 
ducting elements or an array of elements of one 
permittivity embedded in a dielectric of a different 
permittivity has been discussed by Brown [121]. 

3.2.  Magnetic proper t ies  
In a ferromagnetic material, at temperatures well 
below the Curie point, the electronic magnetic 
moments will be aligned within small contiguous 
regions - magnetic domains - within each of 
which the local magnetization is saturated. In the 
demagnetized state, the directions of magnet- 
ization in the different domains will vary so that 
the overall magnetization is zero. On applying a 
magnetic field, the magnetic moment can increase, 
firstly by an increase in the volume of the domains 
which are favourably oriented with respect to the 
field and secondly, in stronger fields, by rotation 
of the magnetization. The high coercivity required 
in permanent magnets is achieved by suppressing 
the possibility of  domain boundary displacement. 
This can be accomplished by using very fine 
particles. A particle with a diameter less than 
about 0.1 to 0.(301/am will always be magnetized' 
to saturation since the formation of a flux-closure 
configuration will be energetically unfavourable 
[122]. Magnetization reversal cannot take place in 
a sufficiently small single domain particle by 
boundary displacement. It can only take place by 
rotation of the magnetization so that large fields 
(depending on the anisotropy energy and shape of 
the particle) may be required. 

The cast or sintered alloys of iron, aluminium, 
nickel and cobalt have been the most widely used 
materials for permanent magnets. Recently, how- 

ever, fine-particle permanent magnet materials 
based on cobalt-rare earth alloys have been devel- 
oped which have properties superior to any 
previously known [123]. The general properties 
of the Alnicos and other cobalt alloy permanent 
magnets have been reviewed by Gould [124]. 

In recent years considerable attention has been 
given to the investigation of rod-type eutectics, 
obtained by unidirectional solidification, as 
permanent magnet materials since, in the absence 

of magnetocrystalline anisotropy, the magnetic 
particles need only be small in two dimensions 
and, as a consequence of the shape anisotropy of 
the demagnetization energy, can be large in the 
third dimension. This is the concept of the 
"elongated single domain". 

Progress in 'this field has been reviewed by 
Galasso [3, 40], Albers [1] and Sahrn and Hofer 
[125]. A number of eutectic components contain- 
ing magnetic rods in a non-magnetic matrix have 
been investigated including InSb - MnSb [126], 
FeS-Fe [127], Bi-Co [125] and Sb-MnSb 
[128]. Livingston [129] in studies with the 
Au-Co eutectic found that as the diameter of the 
Co-rods fell from 1/~m to 0.07/1m, the coercive 
force along the rod axes increased from 30 to 
330 Oe. In early work on the directionally solidi- 
fied Bi-MnBi system, Noothoven van Goor and 
Zijlstra [130] obtained a value of 11 kOe for the 
coercive force at room temperature. In more 
recent work [131] values as high as 24 kOe have 
been obtained with MnBi rod diameters of around 
0.5 to 1.0/lm. With material containing rods of 
smaller diameter the coercive force decreased. This 
was thought to be due to an increasing lack of 
alignment in material obtained at very high growth 
rates. Although these materials exhibit a high 
coercive force the volume fraction of magnetic 
rods and the energy product is low. As noted by 
Albers [1], the best magnetic in situ composites 
are still probably the Alnico alloys obtained by 
spinodal disproportionation [132]. These contain 
a high volume fraction of ferromagnetic rods and 
have a high energy product (11 x 106 GOe). 

Several eutectic systems with magnetic rods in a 
magnetic phase have been investigated including 
CoSb-Co [125], Y2 Colv-Co [3], and Sin2 Co17- 
Co [125]. With the latter system which contained 
ferromagnetic Co-rods in a ferromagnetic 
Sm2Co17 matrix, Sahm and Hofer found that the 
coercive force increased from 50 to 500 Oe as the 
rod diameter was decreased from 2/xm to 0.2/~m. 
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For soft magnetic materials, fine particle sizes 
have to be avoided. Work on Co-Nb and 
C o - N b - F e  directionally solidified eutectics with 
soft magnetic properties has been described by 
Coiling and Kossowsky [133,134].  

3.3. Superconducting properties 
The boundaries of the superconducting state are 
defined by the critical temperature T e and, in a 
magnetic field, by the critical field He(T) at which 
the magnetic flux penetrates the specimen and the 
superconductivity is destroyed. With type I super- 
conductors the flux penetrates abruptly at He; 
with type II superconductors penetration occurs 
gradually over a range He1 to He2. With thin films 
in which the thickness is very much less than the 
London penetration depth (typically about 
500 A), there is no Meissner effect and the critical 
field H e can be very high. In a composite super- 
conducting material the value o f H  e can, therefore, 
increase when the dimensions of the supercon- 
ducting phase are sufficiently small. This effect is 
illustrated by the work of Watson [135,136] on 
porous glass impregnated with indium. With pore 
diameters of from 65 to 250 A and at a tempera- 
ture T below T / Y  e = 0.5, the critical field He was 
given by 

He = (3415 +40) [1 - - (T/Tc)2] /d  t'~176 +- o. 14 

(83) 

where d is the pore diameter in A so that, at a 
given temperature, the critical field was approxi- 
mately inversely proportional to the pore diam- 
eter. Small increases in Tc have also been reported 
with systems of this type [136], the greatest 
relative effect being obtained with an A1-A1203 
multilayer structure in which Te was 4.5 ~ K com- 
pared with a value of 1.2 ~ K for A1 [137]. When 
both phases are metallic decreased phase dimen- 
sions are likely to lead only to decreased critical 
fields [138]. 

At present, the main application of filamentary 
superconducting composites is in the construction 
of powerful electromagnets in which one of the 
main problems is that of stability [139, 140]. 
Instability in the shielding currents induced in the 
superconductor can lead to the phenomenon 
known as flux-jumping. The conditions required to " 
achieve stability have been summarized and 
examined in a series of papers by Wilson and his 
colleagues [141-145] .  To achieve adiabatic 
stability, the energy dissipated by a perturbation is 
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reduced to a level at which it can be absorbed by 
the material itself without a serious rise in tem- 
perature which would lead to destruction of the 
superconductivity. The criterion for adiabatic stab- 
ility is given by the relation [146,147].  

x < (109rrSTo)l)2/4Jc (84) 

where x is the penetration depth of the magentic 
field (cm), S is the heat capacity (J cm -a K -1 ), 

T0 = &/ ( -  d&/d73, (85) 

and Je is the current density (A cm-2). This re- 
lation gives the approximate thickness of super- 
conductor below which flux jumping should not 
occur. Typical numerical values for the type II 
superconductor NbTi are S "~ 2 • 10 -a , To ~ 4 
corresponding to a superconductor thickness or 
filament diameter of about 0.008 cm for a Je of 
3 x l0 s Acm -2. 

An alternative approach is to slow down the 
motion of flux by incorporating a low resistivity 
normal metal (e.g. Cu) thus allowing time for the 
heat to escape from the superconductor by 
thermal conduction. The corresponding dynamic 
stability criterion is given, for a composite con- 
sisting of alternate layers of superconductor and 
normal metal (e.g. Cu), by the relation [148-150] 

d 2<~8T~ 1--Xs 1 (86) 
P Xs J~ ' 

where d is the thickness of the superconductor 
(cm), To is given by Equation 85, k s is the thermal 
conductivity of the superconductor (W cm -1 K -1 ), 
p is the resistivity of the normal metal (f2cm) and 
X s is the volume fraction of superconducting ma- 
terial. This relation gives similar values for the 
superconductor thickness (or filament diameter) 
to those given by Equation 84. For example, with 
T o ~ 4 K ,  J e ~ 3 x  10SAcra -2, k s ~ 1 0 - 3 W  
cm -1 K -1, p ~ 2 x  10 -8 g2cm and X"~0.5, we 
find that d~<0.004 cm. Wilson et al. consider, 
however, that adiabatic stability (which assumes 
no heat loss during a perturbation) provides the 
more secure basis for achieving reliable super- 
conducting performance. 

A.c. losses in filamentary superconductors also 
depend on filament diameter and the calculation 
of these losses has been discussed by London 
[151], Hancox [152] and Wipf[153].  Wilson 
et al. have summarized the basic formulae for 
losses in coils [141]. 

Since the satisfactory performance of filamen- 



tary superconductors is dependent on a t'me 
fdament diameter continued attention has been 
given to the superconducting properties of direc- 
tionally solidified eutectics. References to the 
earlier work are given in the reviews by  Galasso 
[3] and by Gallaso et al. [4]. Recent work has 
included re-examinations of the superconducting 
properties of unidirectionally solidified Pb-Sn  
eutectics [154, 155] together with a preliminary 
investigation [155] of the Josephson effect at 4.2 
K with different inteflamellar spacings. 

3.4. Heat transfer 
In the earlier discussion of the thermal conduc- 
tivity of composite materials (Sections 24 )  it was 
assumed that (a) interface effects were absent and 
(b) heat transfer by radiation did not occur. We 
now consider conditions under which these two 
assumptions are no longer valid and the heat trans- 
fer properties become dependent on phase 
dimensions. 

Heat can be carried through a solid by elec- 
trons, lattice waves (phonons), magnetic 
excitations or electromagnetic radiation (photons). 
The thermal conductivity (X) of the solid is given 
by 

?v = �89 2 Civili, (87) 

where i is the type of carrier, Ci is the contribution 
of the carrier to the specific heat, v i is the carrier 
velocity, and li is the mean free path of the carrier. 

If  the dimensions of the specimen are suf- 
ficiently small, the mean free path of a carrier will 
not be the same as that in the bulk material but 
will be limited by the external boundaries of the 
specimen. The thermal conductivity will then no 
longer be an intrinsic property but will depend on 
the specimen dimensions. 

With dielectric crystals, for example, where the 
phonon free paths can be long at low temperatures 
the thermal conductivity is given by 

X(i 0 = �89 (88) 

where L is of the order of the shortest linear di- 
mension of the specimen, C is the specific heat, 
and v is the velocity of the lattice waves (or the 
sound velocity). The temperature dependence of X 
will then parallel that of the specific heat due to 
lattice waves and X(T) will vary as T 3 at the 
lowest temperatures. 

In a polycrystalline aggregate, the phonon mean 
free path can be determined by the size of the in- 

dividual grains or crystallites. I f  these are of the 
order of tens of  microns this can lead to a de- 
pression in X(T) at low temperatures and an 
extension of the region in which X(T) is pro- 
portional to C(T) to higher temperatures than 
with single crystals. 

There is, therefore, a size effect which may 
have to be taken into account in considering heat 
transfer in composite materials at low tempera- 
tures. There may also be an interface effect since 
acoustic mismatch can limit the transmission of 
phonons across the boundary and there will then 
be a finite difference between the temperature on 
one side of the interface and that on the other 
(With metals and liquid helium this is known as 
the Kapitza thermal boundary resistance). A 
theoretical treatment of this effect has been given 
by Little [156] who showed that for a perfect 
junction with zero modulus of rigidity in both 
materials, the net flow of heat across the interface 
at low temperatures from material t to material 2 
is given by 

de 5.01 x 1016pA 4 d t  -- ~ (T1 -- T~)erg see -1 , 

(89) 

where P is a complicated function of the densities 
of the two materials and the ratio of the acoustic 
velocities, A is the area of  the interface, CI is the 
group velocity (cm sec -1) of the longitudinal 
phonons in the first material, and Ta and 7"2 are 
the temperatures (K) in the two materials. For 
small values of ( T I - T 2 ) / T 1 .  Equation 89 can be 
written in the form 

17 FA a d~ ~ 2 .0x  10 - - = T t A T e r g s e c  -1 
dt  C~ 

(90) 
so that the boundary resistance is inversely pro- 
portional to T a. At low temperatures the effects 
of this boundary resistance can become very pro- 
nounced. The addition of a fine metal powder to a 
dielectric would for example, be expected to in- 
crease the thermal conductivity. However, at low 
temperatures, the temperature dependence of the 
boundary resistance can exceed that of the 
thermal resistance of the dielectric and the thermal 
conductivity of the composite will then be less 
than that of the dielectric [157]. 

These effects have been investigated by Garrett 
and Rosenberg [158] who measured the thermal 
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conductivities of epoxy resin composites at tem- 
peratures between 2 and 300K. The fillers in- 
cluded glass spheres and quartz, corundum and 
diamond powders. The quartz and diamond par- 
ticles were irregular in shape; the corundum 
particles were in the form of small platelets. Above 
about 10 to 20 K, the results with the epoxy/glass 
composites were in agreement with a modified 
form of the Rayleigh equation derived by 
Meredith and Tobias [159], with the quartz and 
diamond powders the results were interpreted 
using the Hamilton and Crosser equation for 
thermal conductivity [160] which includes a 
shape parameter. With all the samples the thermal 
conductivity above 20 K was found to be higher 
than that of the unfilled rasin and to increase with 
increasing filler concentration. 

Below 20 K, marked changes in the composite 
conductivity were observed and with some 
samples the thermal conductivity was appreciably 
lower than that of the unfilled resin. The thermal 
conductivity in the liquid helium region was also 
strongly dependent on the size of the particles and 
this dependence could not be explained merely in 
terms of a frequency-independent scattering of 
phonons at the particle boundaries. Garrett and 
Rosenberg considered that this discrepancy was 
due to acoustic mismatch at the matrix-particle 
interface and showed that the low temperature 
results could be interpreted by calculating an ef- 
fective thermal conductivity for the filler particles 
based on measurements of thermal contact 
resistance. 

At high temperatures, the effects of radiative 
heat transfer may have to be considered. With a 
material which is partially transparent each volume 
element will absorb part of any incident radiation 
and will also re-radiate energy. A certain amount 
of energy can therefore be transmitted through 
the material by these processes of absorption and 
re-radiation in addition to that conducted by 
lattice waves. When the thickness of the specimen 
is much larger than the mean free path of the 
photons, the apparent radiative thermal conduc- 
tivity will be proportional to T a and inversely 
proportional to the Rosseland mean extinction 
coefficient. When the specimen is optically thin, 
the apparent radiative thermal conductivity will 
again be proportional to T 3 but will also be pro- 
portional to the thickness so that the thermal 
conductivity is no longer an intrinsic property of 
the material [ t61] .  
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With composite materials, the photons will be 
scattered at the phase interfaces but, assuming the 
photon mean free path is independent of fre- 
quency the thermal conductivity due to radiation 
will again be proportional to T 3 . The effects of a 
frequency dependence of the mean free path on 
radiative heat transfer through composite materials 
have been considered by Klemens and 
[162]. At low frequencies the mean free path 
must be strongly frequency dependent and indeed 
if the particles are small compared to the wave- 
length, the mean free path should vary as 1/p 4. 
Long-wavelength photons can, therefore, play an 
important part in heat transfer through composite 
materials such as polycrystalline solids, densely 
packed powders, foams and fibrous aggregates 
with the result that the radiative thermal conduc- 
tivity at moderately high temperatures may be 
very much higher than would be expected from 
extrapolating down from temperatures above 
2000 K according to a T 3 law. 

4. Product properties 
The concept of product properties was first de- 
scribed by van Suchtelen [8] and has also been 
discussed by Albers [1]. These properties can be 
distinguished from most of the material property 
combinations considered in the previous sections 
since they depend on the way in which the behav- 
iour of one phase affects that of another. 

Most physical properties of materials can be de- 
fined in terms of an X - Y  effect in which X is an 
input parameter and Y a corresponding output 
parameter. As we have noted, the behaviour of the 
material is then described in terms of a pro- 
portionality tensor ~Y/OX=A where A is a 
property such as electrical conductivity or mag- 
netic susceptibility. Van Suchtelen distinguished 
two ways in which material properties can be 
combined in a two-phase composite material: 

(a) The property arising from an X - Y  effect in 
material 1 can be combined with that from an 
X - Y  effect in material 2. Together these give an 
X - Y  effect in the composite. These properties 
which were termed "sum properties" by Van 
Suchtelen have been discussed in the previous 
sections. 

(b) The output from an X - Y  effect in material 
1 can form the input for a Y - Z  effect in material 
2 to give an X - Z  effect in the composite material. 
The corresponding properties were termed 
"product properties" by van Suchtelen. 



TABLE VII Product properties of composite materials (after van Suchtelen [8] ) 

X - Y - Z  Property of phase I Property of phase II Product property 
(Table II) X -  Y X -  Y X - Z  

123 piezomagnetism magnetoresistance piezoresistance; phonon drag 
124 piezomagnetism Faraday effect rotation of polarization by 

mechanical deformation 
134 piezoelectricity e l e c t r o l u m i n e s c e n c e  piezoluminescence 
134 piezoelectricity Kerr effect rotation of polarization by 

mechanical deformation 
213 magnetostriction piezoelectricity magneto-electric effect 
213 magnetostriction piezoresistance magnetoresistance; spin-wave 

interaction 
253 Nernst-Ettingshausen Seebeck effect quasi-Hall effect 

effect 
214 magnetostriction stress-induced birefringence 
312 electrostriction piezo magnetism magnetically induced birefringence 
313 electrostriction piezoresistivity ~ electromagnetic effect 
343 electroluminescence photoconductivity J coupling between p and E (negative 
314 electrostriction stress-induced bffefringence diff. resistance, quasi Gunn effect) 

421 photomagnetic effect magnetostriction "~ 
421 photoconductivity electrostriction J 
434 photoconductivity electroluminescence 

443 scintillation photo conductivity 

444 scintillation fluorescence fluorescence 

electrically induced biIefringence; 
light modulation 
photostriction 
wavelength changer (infra-red 
visible etc) 
radiation induced conductivity 
(detectors) 
radiation detectors 2-stage 
fluorescence 

The concept of product properties is clearly of 
considerable potential importance in the develop- 
ment of composite materials with novel properties. 
The principle may be similar to that in an elec- 
tronic or other device but with the composite 
material the resulting property is an intrinsic prop- 
erty of the material. The X - Z  effect may be 
achieved by the use of different Y parameters and 
the coupling mechanism can consequently take 
different forms: electrical, optical, magnetic, 
thermal, chemical and mechanical coupling are all 
possibilities. An example of mechanical coupling 
would be a magneto-electric effect produced in a 
composite material by mechanical coupling be- 
tween a magnetostrictive phase and a piezoelectric 
phase. 

The potentialities of this concept are illustrated 
by Tables VI and VII taken from the paper by van 
Suchtelen. Table VI is essentially a 6 x 6 matrix in 
which the most obvious X - Y  (or Y - Z )  effects 
have been tabulated, These can then be combined 
as indicated in Table VII to give the product prop- 
erties listed in the table. 

The feasibility of this approach has been con- 
firmed experimentally by (a) the investigation of 
magneto-electric and electromagnetic effects in a 

BaTiO3-CoF%O4 eutectic and (b) the develop- 
ment of an X-ray fluorescent material consisting of 
fine (--~ l~m)PbC12 particles in an anthracene 
matrix. In the latter case, the X-rays release sec- 
ondary electrons with high efficiency in file PbC12 
and these electrons which have a range of a few 
/am spend most of their time in the anthracene 
which is a good scintillator. The composite had an 
X-ray to visible light conversion efficiency ex- 
ceeding that of anthracene (saturated with PbC12) 
by at least one order of magnitude in a layer 
thickness less than 0.05 cm. 

In a sense, product p/operties can be regarded 
as a special, and potentially important, aspect of 
the general physical behaviour of composite ma- 
terials. In the general case, when considering the 
physical behaviour of a composite material all the 
possible interactions between the phases should 
considered whether they be electrical, magnetic or 
mechanical. This is not usually done and in the 
consideration of dielectric properties it is normally 
assumed that mechanical interactions are absent 
and that piezoelectric effects do not have to be 
considered. On the other hand, in the discussion of 
thermal expansion it is recognized that mechanical 
interactions must be important and these are taken 

2135 



into account. The concept of  product  properties 
is, however, of  considerable importance since it 
indicates the ways in which interactions arising 
through different forms of  coupling can be ex- 
ploited in the development of  materials with novel 
properties. 

5. Other special property combinations 
As we have seen, a particular property of  a com- 
posite material can be varied in a controlled way 
by controlled changes in the composition and 
structure. This means that by a suitable selection 
of  components and  structural geometry it may be 
possible to achieve a combination of  properties 
which cannot be realized with a homogeneous ma- 
terial. Thus, for example, with fibre composites we 
have the possibility of  very high mechanical 
strength combined with very high electrical 
conductivity. 

The possibility of  achieving a particular com- 
bination of  physical properties is illustrated by the 
work of  Liebmann and Miller [163] on the ther- 
moelectric properties of  directionally solidified 
InSb-Sb  eutectics. The microstructure consisted 
of  antimony rods in an InSb matrix. Values for the 
specific resistance (p), the thermoelectric power 
(4) and the thermal conductivity (K) are given in 
Table VIII  which also includes values for the figure 
of  merit (Z) given by 

42 
pK 

InSb-Sb  eutectics are markedly anisotropic in 
electrical resistance and that the values of  ~ and K 
differ considerably from those for the pure ma- 
terials. Unfortunately, the values of  Z are not as 
high as the values for either InSb or Sb although 
higher values might be obtained by a further 
reduction in rod diameter. Similar studies have 
been carried out with the B i z T % - T e  [3],  

Mg-MgaTAll2 and Bi -Cd  [164] systems but the 
figure of  merit values with these materials were 
not sufficiently outstanding to make them com- 
petitive with single phase materials [3].  More 
recently Levinson [165] has examined the ther- 
moelectric properties of  an aligned CrSi2-Si 
eutectic. 

The outstanding example of  the way in which a 
required combination of  electrical properties can 
be achieved with a composite material is provided 
by the development at the Siemens Laboratories 
of  magnetoresistive devices based on the direc- 
tionally solidified InSb-NiSb eutectic in which 
metallic NiSb rods are aligned in a InSb matrix 
(Fig. 12). This work has been summarized recently 

It follows from equation 91 that a reduction in 
the thermal conductivity will lead to a higher value 
for Z and with semi-conductors this can be 
achieved by mixed crystal formation which leads 
to statistically distributed lattice distortions [7].  

It will be seen from Table VIII  that the 

Figure12 Polished surface of InSb-NiSb eutectic. 
Left: surface parallel to NiSb needles. Right: surface 
perpendicular to NiSb needles [7]. (Courtesy Professor H. 
Weiss.) 

T A B L E V I I I Thermoelectric properties of directionally solidified InSb -Sb eutectics [ 163 ] 

Sb rod s i z e  Direction of measurement p 4~ K Z X 106 
(cm) (to Sb rods) (f~cm) (#V deg -1 ) (Wcrn- 1 deg- 1 ) (deg- 1 ) 

4.3 X 10 -4 [L 3.05 X 1 0  - 4  - -  18 0.1113 9.5 
• 3.3 Xl0 -s --71 0.0822 18.6 

8.5 X 10 -4 tt 3.00 x 10 -4 -- 12 0.1235 3.9 
• 3.3 x10 -3 --53 0.0940 9.1 

2.8 x 10 -3 II 3.15 • 10 -4 --8.2 0.1430 1.5 
• 3.4 • 10 -3 --28 0.1059 2.2 

Pure materials 
InSb 
Sb 

10 -2 -- 325 0.162 65.2 
4.4 X 10 .2 + 35 0.189 147.3 

2136 



by Weiss [7] and will only be discussed briefly in 
this review. 

The origin of the large magnetoresistive effect 
in these materials can be explained by first con- 
sidering the Hall effect in an elongated plate of 
InSb traversed by a current i flowing in a direction 
parallel to the longitudinal axis of the plate. If a 
magnetic field B is applied in a direction perpen- 
dicular both to the plane of the plate and the 
direction of the current then a Hall voltage perpen- 
dicular to I and B is obtained. If the Hall voltage is 
now short circuited by wires at intervals along the 
plate as shown in Fig. 13a, then the Hall current 
flowing through these wires produces a further 
Hall voltage parallel to the primary current i and 
results in an additional resistance AR which will be 
proportional to the magnetic field. The current 
flowing through the InSb will follow a zig-zag path 
from one end of the plate to the other. With an in- 
finite number of short circuits, the relative 
increase in resistance will be (gBB) 2 where/l  B is 
the electron Hall mobility in a magnetic field B. 
For intrinsic InSb, ~BB has a value of 5 in a field 
of 10kG so that a 25-fold increase in resistance 

should be theoretically attainable with a short 
circuited material. 

In the InSb-NiSb eutectic the short circuits are 
provided by the metallic NiSb rods (Fig. t3b) 
which have an electrical conductivity two orders 
of magnitude greater than that of the InSb matrix. 
With the aligned eutectic about 60% of the theor- 
etical magnetoresistive effect is obtained. The 
more important applications of magnetoresistive 
devices based on the InSb-NiSb eutectic include 
the measurement of magnetic fields, contactless 
variable resistances and potentiometers (Fig. 14), 
and other contactless controls. 

iHl 
U 

B S  
J 

i/- //i / / '  I I  
i ~ ~ I I  

- -  l I r I 

(a) 

a J 
J 

~ ,  I I ~l I I i I i ~  HI ii  II r 
lli i, II r , i [ : i  
L ]lj- ~ L j _lL_l_ l L J_ L_l_ Ll.l 

(b) 

Figure 13 Magnetoresistive effect in directionally 
solidified InSb-NiSb eutectic. (a) Externally short 
circuited InSb plate. (b) Short-circuiting NiSb needles in 
InSb-NiSb eutectic. (After Weiss [71 .} 

Figure 14 Contactless nominal current indicator for 
electric locomotive brake (courtesy Professor H. Weiss). 

In a sense, the InSb-NiSb eutectic could be 
regarded as a device rather than a material. 
However, as noted by Albers [1], the composite is 
essentially a new material showing an extremely 
high magnetoresistance effect and this property is 
retained whgtever the shape of the specimen. The 
effects arise through a special anisotropic combi- 
nation of the electrical properties of InSb and 
NiSb. A similar high magnetoresistive effect would 
be shown by InSb itself if the electron and hole 
mobilities were equally high. In fact the hole 
mobility in lnSb is small. The composite is, there- 
fore, essentially a new material with unique 
properties. 

In addition to the magnetoresistive effect the 
Hall current flowing through the NiSb rods gives 
rise to a Peltier effect so that a temperature dif- 
ference is observed between the two surfaces of 
the eutectic. Unfortunately, although the figure of 
merit is 30 times as high as that of homogeneous 
InSb, the thermal conductivity of InSb is too high 
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Figure 15 Infra-red detector with InSb-NiSb eutectic 
(courtesy Professor H. Weiss). 

for devices based on this effect to have practical 
value. The converse effect which is observed when 
a temperature difference AT is imposed on the 
system has, however, been exploited in a 
room-temperature detector for the far infra-red 
(Fig. 15). 

A large number of aligned eutectics involving 
III-V compounds have been examined [7] but 
none of these has shown the outstanding prop- 
erties of the unidirectionally solidified InSb-  
NiSb-system. A magnetoresistive effect was 
observed with the Cd As-NiAs eutectic [166] but 
again this was not as large as that with InSb-NiSb. 
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